使用 Pyspark 计算 Spark 数据帧每列中的非 NaN 条目数

Count number of non-NaN entries in each column of Spark dataframe with Pyspark

我在 Hive 中加载了一个非常大的数据集。它由大约 190 万行和 1450 列组成。我需要确定每一列的 "coverage",也就是说,每列具有非 NaN 值的行的比例。

这是我的代码:

from pyspark import SparkContext
from pyspark.sql import HiveContext
import string as string

sc = SparkContext(appName="compute_coverages") ## Create the context
sqlContext = HiveContext(sc)

df = sqlContext.sql("select * from data_table")
nrows_tot = df.count()

covgs=sc.parallelize(df.columns)
        .map(lambda x: str(x))
        .map(lambda x: (x, float(df.select(x).dropna().count()) / float(nrows_tot) * 100.))

在 pyspark shell 中尝试此操作,如果我随后执行 covgs.take(10),它 returns 一个相当大的错误堆栈。它说在文件 /usr/lib64/python2.6/pickle.py 中保存时出现问题。这是错误的最后一部分:

py4j.protocol.Py4JError: An error occurred while calling o37.__getnewargs__. Trace:
py4j.Py4JException: Method __getnewargs__([]) does not exist
        at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:333)
        at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:342)
        at py4j.Gateway.invoke(Gateway.java:252)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:207)
        at java.lang.Thread.run(Thread.java:745)

如果有比我正在尝试的方法更好的方法来完成此任务,我愿意接受建议。不过,我无法使用 pandas,因为它目前在我工作的集群上不可用,而且我无权安装它。

让我们从虚拟数据开始:

from pyspark.sql import Row

row = Row("v", "x", "y", "z")
df = sc.parallelize([
    row(0.0, 1, 2, 3.0), row(None, 3, 4, 5.0),
    row(None, None, 6, 7.0), row(float("Nan"), 8, 9, float("NaN"))
]).toDF()

## +----+----+---+---+
## |   v|   x|  y|  z|
## +----+----+---+---+
## | 0.0|   1|  2|3.0|
## |null|   3|  4|5.0|
## |null|null|  6|7.0|
## | NaN|   8|  9|NaN|
## +----+----+---+---+

您只需要一个简单的聚合:

from pyspark.sql.functions import col, count, isnan, lit, sum

def count_not_null(c, nan_as_null=False):
    """Use conversion between boolean and integer
    - False -> 0
    - True ->  1
    """
    pred = col(c).isNotNull() & (~isnan(c) if nan_as_null else lit(True))
    return sum(pred.cast("integer")).alias(c)

df.agg(*[count_not_null(c) for c in df.columns]).show()

## +---+---+---+---+
## |  v|  x|  y|  z|
## +---+---+---+---+
## |  2|  3|  4|  4|
## +---+---+---+---+

或者如果你想治疗 NaN NULL:

df.agg(*[count_not_null(c, True) for c in df.columns]).show()

## +---+---+---+---+
## |  v|  x|  y|  z|
## +---+---+---+---+
## |  1|  3|  4|  3|
## +---+---+---+---

您还可以利用 SQL NULL 语义来实现相同的结果,而无需创建自定义函数:

df.agg(*[
    count(c).alias(c)    # vertical (column-wise) operations in SQL ignore NULLs
    for c in df.columns
]).show()

## +---+---+---+
## |  x|  y|  z|
## +---+---+---+
## |  1|  2|  3|
## +---+---+---+

但这不适用于 NaNs

如果您更喜欢分数:

exprs = [(count_not_null(c) / count("*")).alias(c) for c in df.columns]
df.agg(*exprs).show()

## +------------------+------------------+---+
## |                 x|                 y|  z|
## +------------------+------------------+---+
## |0.3333333333333333|0.6666666666666666|1.0|
## +------------------+------------------+---+

# COUNT(*) is equivalent to COUNT(1) so NULLs won't be an issue
df.select(*[(count(c) / count("*")).alias(c) for c in df.columns]).show()

## +------------------+------------------+---+
## |                 x|                 y|  z|
## +------------------+------------------+---+
## |0.3333333333333333|0.6666666666666666|1.0|
## +------------------+------------------+---+

Scala 等价物:

import org.apache.spark.sql.Column
import org.apache.spark.sql.functions.{col, isnan, sum}

type JDouble = java.lang.Double

val df = Seq[(JDouble, JDouble, JDouble, JDouble)](
  (0.0, 1, 2, 3.0), (null, 3, 4, 5.0),
  (null, null, 6, 7.0), (java.lang.Double.NaN, 8, 9, java.lang.Double.NaN)
).toDF()


def count_not_null(c: Column, nanAsNull: Boolean = false) = {
  val pred = c.isNotNull and (if (nanAsNull) not(isnan(c)) else lit(true))
  sum(pred.cast("integer"))
}

df.select(df.columns map (c => count_not_null(col(c)).alias(c)): _*).show
// +---+---+---+---+                                                               
// | _1| _2| _3| _4|
// +---+---+---+---+
// |  2|  3|  4|  4|
// +---+---+---+---+

 df.select(df.columns map (c => count_not_null(col(c), true).alias(c)): _*).show
 // +---+---+---+---+
 // | _1| _2| _3| _4|
 // +---+---+---+---+
 // |  1|  3|  4|  3|
 // +---+---+---+---+

您可以使用 isNotNull() :

df.where(df[YOUR_COLUMN].isNotNull()).select(YOUR_COLUMN).show()