由于长 RDD 沿袭导致的 Stackoverflow

Stackoverflow due to long RDD Lineage

我在 HDFS 中有数千个小文件。需要处理稍微小一点的文件子集(也是数千个),fileList 包含需要处理的文件路径列表。

// fileList == list of filepaths in HDFS

var masterRDD: org.apache.spark.rdd.RDD[(String, String)] = sparkContext.emptyRDD

for (i <- 0 to fileList.size() - 1) {

val filePath = fileStatus.get(i)
val fileRDD = sparkContext.textFile(filePath)
val sampleRDD = fileRDD.filter(line => line.startsWith("#####")).map(line => (filePath, line)) 

masterRDD = masterRDD.union(sampleRDD)

}

masterRDD.first()

//一旦跳出循环,由于RDD的长沿袭,执行任何操作都会导致Whosebug错误

Exception in thread "main" java.lang.WhosebugError
    at scala.runtime.AbstractFunction1.<init>(AbstractFunction1.scala:12)
    at org.apache.spark.rdd.UnionRDD$$anonfun.<init>(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun.apply(UnionRDD.scala:66)
    at scala.collection.TraversableLike$$anonfun$map.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map.apply(TraversableLike.scala:244)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun.apply(UnionRDD.scala:66)
    at scala.collection.TraversableLike$$anonfun$map.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map.apply(TraversableLike.scala:244)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun.apply(UnionRDD.scala:66)
    =====================================================================
    =====================================================================
    at scala.collection.TraversableLike$$anonfun$map.apply(TraversableLike.scala:244)

一般来说,您可以使用检查点来打破长血统。一些或多或少与此类似的东西应该可以工作:

import org.apache.spark.rdd.RDD
import scala.reflect.ClassTag

val checkpointInterval: Int = ???

def loadAndFilter(path: String) = sc.textFile(path)
  .filter(_.startsWith("#####"))
  .map((path, _))

def mergeWithLocalCheckpoint[T: ClassTag](interval: Int)
  (acc: RDD[T], xi: (RDD[T], Int)) = {
    if(xi._2 % interval == 0 & xi._2 > 0) xi._1.union(acc).localCheckpoint
    else xi._1.union(acc)
  }

val zero: RDD[(String, String)] = sc.emptyRDD[(String, String)]
fileList.map(loadAndFilter).zipWithIndex
  .foldLeft(zero)(mergeWithLocalCheckpoint(checkpointInterval))

在这种特殊情况下,一个更简单的解决方案应该是使用 SparkContext.union 方法:

val masterRDD = sc.union(
  fileList.map(path => sc.textFile(path)
    .filter(_.startsWith("#####"))
    .map((path, _))) 
)

看一下循环生成的 DAG 时,这些方法之间的区别应该很明显 / reduce:

和一个 union:

当然,如果文件很小,您可以将 wholeTextFilesflatMap 结合起来,一次读取所有文件:

sc.wholeTextFiles(fileList.mkString(","))
  .flatMap{case (path, text) =>  
    text.split("\n").filter(_.startsWith("#####")).map((path, _))}