如何对混合类型的 Pandas 数据帧进行重采样?

How to resample a Pandas dataframe of mixed type?

我使用以下 Python 代码生成混合类型(浮点数和字符串)Pandas DataFrame df3:

df1 = pd.DataFrame(np.random.randn(dates.shape[0],2),index=dates,columns=list('AB'))
df1['C'] = 'A'
df1['D'] = 'Pickles'
df2 = pd.DataFrame(np.random.randn(dates.shape[0], 2),index=dates,columns=list('AB'))
df2['C'] = 'B'
df2['D'] = 'Ham'
df3 = pd.concat([df1, df2], axis=0)

当我将 df3 重新采样到更高的频率时,我没有将帧重新采样到更高的频率,但是如何被忽略,我只是得到缺失值:

df4 = df3.groupby(['C']).resample('M',  how={'A': 'mean', 'B': 'mean',  'D': 'ffill'})
df4.head()

结果:

                      B          A        D
C                                          
A 2014-03-31 -0.4640906 -0.2435414  Pickles
  2014-04-30        NaN        NaN      NaN
  2014-05-31        NaN        NaN      NaN
  2014-06-30 -0.5626360  0.6679614  Pickles
  2014-07-31        NaN        NaN      NaN

当我将 df3 重新采样到较低频率时,我根本没有进行任何重新采样:

df5 = df3.groupby(['C']).resample('A',  how={'A': np.mean, 'B': np.mean,  'D': 'ffill'})
df5.head()

结果:

                      B          A        D
C                                          
A 2014-03-31        NaN        NaN  Pickles
  2014-06-30        NaN        NaN  Pickles
  2014-09-30        NaN        NaN  Pickles
  2014-12-31 -0.7429617 -0.1065645  Pickles
  2015-03-31        NaN        NaN  Pickles

我很确定这与混合类型有关,因为如果我仅使用数字列重做年度下采样,一切都会按预期进行:

df5b = df3[['A', 'B', 'C']].groupby(['C']).resample('A',  how={'A': np.mean, 'B': np.mean})
df5b.head()

结果:

                     B          A
  C                                 
  A 2014-12-31 -0.7429617 -0.1065645
    2015-12-31 -0.6245030 -0.3101057
  B 2014-12-31  0.4213621 -0.0708263
    2015-12-31 -0.0607028  0.0110456

但即使我切换到数字类型,对更高频率的重采样仍然无法按我的预期工作:

df4b = df3[['A', 'B', 'C']].groupby(['C']).resample('M',  how={'A': 'mean', 'B': 'mean'})
df4b.head()

结果:

                      B          A
C                                 
A 2014-03-31 -0.4640906 -0.2435414
  2014-04-30        NaN        NaN
  2014-05-31        NaN        NaN
  2014-06-30 -0.5626360  0.6679614
  2014-07-31        NaN        NaN

这让我有两个问题:

  1. 对混合类型的数据帧重新采样的正确方法是什么?
  2. 当从较低频率重采样到较高频率时,进行重采样以便插入新值的正确方法是什么?

即使您不能对两个部分都提供完整的答案,也可以提供部分解决方案或对任一问题的答案。

当从较低频率重新采样到较高频率时,我意识到当我想指定 fill_method[ 时,我指定了 how =25=]。当我这样做时,事情似乎有效。

df4c = df3.groupby(['C']).resample('M',  fill_method='ffill')
df4c.head()
                     A          B        D
C                                          
A 2014-03-31 -0.2435414 -0.4640906  Pickles
  2014-04-30 -0.2435414 -0.4640906  Pickles
  2014-05-31 -0.2435414 -0.4640906  Pickles
  2014-06-30  0.6679614 -0.5626360  Pickles
  2014-07-31  0.6679614 -0.5626360  Pickles

您获得的插值选择集更加有限,但它确实可以处理混合类型。

当不使用 how 选项重新采样到较低频率时(我相信它的默认意思是)down-sampling 确实有效:

   df5c =df3.groupby(['C']).resample('A')
   df5c.head()
                  A          B
C                                 
A 2014-12-31 -0.1065645 -0.7429617
  2015-12-31 -0.3101057 -0.6245030
B 2014-12-31 -0.0708263  0.4213621
  2015-12-31  0.0110456 -0.0607028

因此,问题似乎出在传递 how 选项的字典或选项选择之一,大概是 ffill,但我不确定。

使用resampleagg

pandas-1.0.0以来,how and fill_method keywords no longer exist。 此外,resample 方法现在 returns a Resampler object.

解决方案是使用与每一列关联的函数或函数名称来定义聚合规则。

df.resample(period).agg(aggregation_rule)

聚合规则的更多示例in the documentation

工作示例

准备测试数据:

import numpy as np
import pandas as pd

dates = pd.date_range("2021-02-09", "2021-04-09", freq="1D")
df1 = pd.DataFrame(np.random.randn(dates.shape[0],2), index=dates, columns=list('AB'))
df1['C'] = 'A'
df1['D'] = 'Pickles'
df2 = pd.DataFrame(np.random.randn(dates.shape[0], 2), index=dates, columns=list('AB'))
df2['C'] = 'B'
df2['D'] = 'Ham'
df3 = pd.concat([df1, df2], axis=0)
print(df3)

输出:

                   A         B  C        D
2021-02-09  2.591285  2.455686  A  Pickles
2021-02-10  0.753461 -0.072643  A  Pickles
2021-02-11 -0.351667 -0.025511  A  Pickles
2021-02-12 -0.896730  0.004512  A  Pickles
2021-02-13 -0.493139 -0.770514  A  Pickles
...              ...       ... ..      ...
2021-04-05  1.615935  1.152517  B      Ham
2021-04-06 -0.067654 -0.858186  B      Ham
2021-04-07  0.085587 -0.848542  B      Ham
2021-04-08 -0.371983  0.088441  B      Ham
2021-04-09  0.681501  0.235328  B      Ham

[120 rows x 4 columns]

每月重新采样:

agg_rules = { "A": "mean", "B": "sum", "C": "first", "D": "last",}
df4 = df3.resample("M").agg(agg_rules)
print(df4)

输出:

                   A         B  C    D
2021-02-28  0.025987  3.886781  A  Ham
2021-03-31  0.081423 -5.492928  A  Ham
2021-04-30  0.239309 -3.344334  A  Ham