查找一组索引,将一个 NumPy ndarray 的行映射到另一个

Finding a set of indices that maps the rows of one NumPy ndarray to another

我有两个结构化的二维numpy数组,原则上相等,意思是

A = numpy.array([[a1,b1,c1],
                 [a2,b2,c2],
                 [a3,b3,c3],
                 [a4,b4,c4]]) 

B = numpy.array([[a2,b2,c2],
                 [a4,b4,c4],
                 [a3,b3,c3],
                 [a1,b1,c1]])

不是

意义上的
numpy.array_equal(A,B) # False
numpy.array_equiv(A,B) # False
numpy.equal(A,B) # ndarray of True and False

但从某种意义上说,一个数组 (A) 原始 而在另一个数组 (B) 中,数据沿一个轴打乱(可能是沿着行或列)。

什么是 sort/shuffle B 匹配或等于 A 或者排序 A 等于 B 的有效方法?相等性检查确实不重要,只要将两个数组打乱以相互匹配即可。 A 因此 B 具有唯一的行。

我尝试了 view 方法来对两个数组进行排序

def sort2d(A):
    A_view = np.ascontiguousarray(A).view(np.dtype((np.void,
             A.dtype.itemsize * A.shape[1])))
    A_view.sort()
    return A_view.view(A.dtype).reshape(-1,A.shape[1])   

但这显然在这里不起作用。需要对非常大的阵列执行此操作,因此性能和可伸缩性至关重要。

根据您的示例,您似乎同时打乱了所有列,因此存在映射 A→B 的行索引向量。这是一个玩具示例:

A = np.random.permutation(12).reshape(4, 3)
idx = np.random.permutation(4)
B = A[idx]

print(repr(A))
# array([[ 7, 11,  6],
#        [ 4, 10,  8],
#        [ 9,  2,  0],
#        [ 1,  3,  5]])

print(repr(B))
# array([[ 1,  3,  5],
#        [ 4, 10,  8],
#        [ 7, 11,  6],
#        [ 9,  2,  0]])

我们想要恢复一组索引,idx,使得 A[idx] == B。当且仅当 AB 不包含重复行时,这将是一个唯一映射。


一种有效的*方法是找到可以对 A 中的行进行词法排序的索引,然后找到 B[=60= 中每一行的位置] 将属于 A 的排序版本。 A useful trick 是将 AB 视为一维数组,使用 np.void dtype 将每一行视为单个元素:

rowtype = np.dtype((np.void, A.dtype.itemsize * A.size / A.shape[0]))
# A and B must be C-contiguous, might need to force a copy here
a = np.ascontiguousarray(A).view(rowtype).ravel()
b = np.ascontiguousarray(B).view(rowtype).ravel()

a_to_as = np.argsort(a)     # indices that sort the rows of A in lexical order

现在我们可以使用 np.searchsortedB 中的每一行都属于 A[= 的排序版本的位置执行二进制搜索60=]:

# using the `sorter=` argument rather than `a[a_to_as]` avoids making a copy of `a`
as_to_b = a.searchsorted(b, sorter=a_to_as)

A→B的映射可以表示为A→As→B[的复合=60=]

a_to_b = a_to_as.take(as_to_b)
print(np.all(A[a_to_b] == B))
# True

如果AB不包含重复行,从B→A[=60=的逆映射]也可以使用

获得
b_to_a = np.argsort(a_to_b)
print(np.all(B[b_to_a] == A))
# True

作为单一函数:

def find_row_mapping(A, B):
    """
    Given A and B, where B is a copy of A permuted over the first dimension, find
    a set of indices idx such that A[idx] == B.
    This is a unique mapping if and only if there are no repeated rows in A and B.

    Arguments:
        A, B:   n-dimensional arrays with same shape and dtype
    Returns:
        idx:    vector of indices into the rows of A
    """

    if not (A.shape == B.shape):
        raise ValueError('A and B must have the same shape')
    if not (A.dtype == B.dtype):
        raise TypeError('A and B must have the same dtype')

    rowtype = np.dtype((np.void, A.dtype.itemsize * A.size / A.shape[0]))
    a = np.ascontiguousarray(A).view(rowtype).ravel()
    b = np.ascontiguousarray(B).view(rowtype).ravel()
    a_to_as = np.argsort(a)
    as_to_b = a.searchsorted(b, sorter=a_to_as)

    return a_to_as.take(as_to_b)

基准:

In [1]: gen = np.random.RandomState(0)
In [2]: %%timeit A = gen.rand(1000000, 100); B = A.copy(); gen.shuffle(B)
....: find_row_mapping(A, B)
1 loop, best of 3: 2.76 s per loop

*成本最高的步骤是对行进行快速排序,平均为 O(n log n)。我不确定是否可以做得比这更好。

由于可以对其中一个数组进行打乱以匹配另一个数组,因此没有人阻止我们重新排列两个数组。使用 Jaime's Answer,我们可以 vstack 两个数组并找到唯一的行。然后 unique 返回的逆索引本质上是所需的映射(因为数组不包含重复行)。

为了方便,我们先定义一个unique2d函数:

def unique2d(arr,consider_sort=False,return_index=False,return_inverse=False): 
    """Get unique values along an axis for 2D arrays.

        input:
            arr:
                2D array
            consider_sort:
                Does permutation of the values within the axis matter? 
                Two rows can contain the same values but with 
                different arrangements. If consider_sort 
                is True then those rows would be considered equal
            return_index:
                Similar to numpy unique
            return_inverse:
                Similar to numpy unique
        returns:
            2D array of unique rows
            If return_index is True also returns indices
            If return_inverse is True also returns the inverse array 
            """

    if consider_sort is True:
        a = np.sort(arr,axis=1)
    else:
        a = arr
    b = np.ascontiguousarray(a).view(np.dtype((np.void, 
            a.dtype.itemsize * a.shape[1])))

    if return_inverse is False:
        _, idx = np.unique(b, return_index=True)
    else:
        _, idx, inv = np.unique(b, return_index=True, return_inverse=True)

    if return_index == False and return_inverse == False:
        return arr[idx]
    elif return_index == True and return_inverse == False:
        return arr[idx], idx
    elif return_index == False and return_inverse == True:
        return arr[idx], inv
    else:
        return arr[idx], idx, inv

我们现在可以定义我们的映射如下

def row_mapper(a,b,consider_sort=False):
    """Given two 2D numpy arrays returns mappers idx_a and idx_b 
        such that a[idx_a] = b[idx_b] """

    assert a.dtype == b.dtype
    assert a.shape == b.shape

    c = np.concatenate((a,b))
    _, inv = unique2d(c, consider_sort=consider_sort, return_inverse=True)
    mapper_a = inv[:b.shape[0]]
    mapper_b = inv[b.shape[0]:]

    return np.argsort(mapper_a), np.argsort(mapper_b) 

验证:

n = 100000
A = np.arange(n).reshape(n//4,4)
B = A[::-1,:]

idx_a, idx_b  = row_mapper(A,B)
print np.all(A[idx_a]==B[idx_b])
# True

基准: 针对@ali_m 的解决方案

进行基准测试
%timeit find_row_mapping(A,B) # ali_m's solution
%timeit row_mapper(A,B) # current solution

# n = 100
100000 loops, best of 3: 12.2 µs per loop
10000 loops, best of 3: 47.3 µs per loop

# n = 1000
10000 loops, best of 3: 49.1 µs per loop
10000 loops, best of 3: 148 µs per loop

# n = 10000
1000 loops, best of 3: 548 µs per loop
1000 loops, best of 3: 1.6 ms per loop

# n = 100000
100 loops, best of 3: 6.96 ms per loop
100 loops, best of 3: 19.3 ms per loop

# n = 1000000
10 loops, best of 3: 160 ms per loop
1 loops, best of 3: 372 ms per loop

# n = 10000000
1 loops, best of 3: 2.54 s per loop
1 loops, best of 3: 5.92 s per loop

虽然可能还有改进的余地,但当前的解决方案比ali_m的解决方案慢2-3倍,而且可能有点混乱,而且两个数组都需要映射。只是认为这可能是一个替代解决方案。