如何在 jupyter notebook 中并排渲染两个 pd.DataFrames?

How to render two pd.DataFrames in jupyter notebook side by side?

有没有一种简单的方法可以在 Jupyter 笔记本中快速并排查看两个 pd.DataFrames 的内容?

df1 = pd.DataFrame([(1,2),(3,4)], columns=['a', 'b'])
df2 = pd.DataFrame([(1.1,2.1),(3.1,4.1)], columns=['a', 'b'])
df1, df2

最接近您想要的可能是:

> df1.merge(df2, right_index=1, left_index=1, suffixes=("_1", "_2"))
   a_1  b_1  a_2  b_2
0    1    2  1.1  2.1
1    3    4  3.1  4.1

这不是特定于笔记本,但它会工作,而且并不那么复杂。另一种解决方案是将您的数据框转换为图像并将它们并排放置在子图中。但这有点牵强和复杂。

我最终使用了一个辅助函数来快速比较两个数据帧:

def cmp(df1, df2, topn=10):
    n = topn
    a = df1.reset_index().head(n=n)
    b = df2.reset_index().head(n=n)

    span = pd.DataFrame(data=[('-',) for _ in range(n)], columns=['sep'])

    a = a.merge(span, right_index=1, left_index=1)
    return a.merge(b, right_index=1, left_index=1, suffixes=['_L', '_R'])

你应该从@Wes_McKinney

试试这个功能
def side_by_side(*objs, **kwds):
    ''' Une fonction print objects side by side '''
    from pandas.io.formats.printing import adjoin
    space = kwds.get('space', 4)
    reprs = [repr(obj).split('\n') for obj in objs]
    print(adjoin(space, *reprs))


# building a test case of two DataFrame
import pandas as pd
import numpy as np


n, p = (10, 3)  # dfs' shape

# dfs indexes and columns labels
index_rowA = [t[0]+str(t[1]) for t in zip(['rA']*n, range(n))]
index_colA = [t[0]+str(t[1]) for t in zip(['cA']*p, range(p))]

index_rowB = [t[0]+str(t[1]) for t in zip(['rB']*n, range(n))]
index_colB = [t[0]+str(t[1]) for t in zip(['cB']*p, range(p))]

# buliding the df A and B
dfA = pd.DataFrame(np.random.rand(n,p), index=index_rowA, columns=index_colA)
dfB = pd.DataFrame(np.random.rand(n,p), index=index_rowB, columns=index_colB)

side_by_side(dfA,dfB) 输出

          cA0       cA1       cA2              cB0       cB1       cB2
rA0  0.708763  0.665374  0.718613    rB0  0.320085  0.677422  0.722697
rA1  0.120551  0.277301  0.646337    rB1  0.682488  0.273689  0.871989
rA2  0.372386  0.953481  0.934957    rB2  0.015203  0.525465  0.223897
rA3  0.456871  0.170596  0.501412    rB3  0.941295  0.901428  0.329489
rA4  0.049491  0.486030  0.365886    rB4  0.597779  0.201423  0.010794
rA5  0.277720  0.436428  0.533683    rB5  0.701220  0.261684  0.502301
rA6  0.391705  0.982510  0.561823    rB6  0.182609  0.140215  0.389426
rA7  0.827597  0.105354  0.180547    rB7  0.041009  0.936011  0.613592
rA8  0.224394  0.975854  0.089130    rB8  0.697824  0.887613  0.972838
rA9  0.433850  0.489714  0.339129    rB9  0.263112  0.355122  0.447154