如何使用具有自定义功能的 sklearn 管道?

How to use sklearn Pipeline with custom Features?

我正在使用 Python 和 sklearn 进行文本分类。除了矢量化器之外,我还使用了一些自定义功能。我想知道是否可以将它们与 sklearn Pipeline 一起使用,以及这些功能将如何堆叠在其中。

我当前没有管道的分类代码的简短示例。请告诉我,如果您发现其中有任何问题,将非常感谢您的帮助。是否可以以某种方式将它与 sklearn 管道一起使用? 我创建了自己的函数 get_features(),它提取自定义特征、转换矢量化器​​、缩放特征并最终堆叠所有这些特征。

import sklearn.svm
import re
from sklearn import metrics
import numpy
import scipy.sparse
import datetime
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.preprocessing import StandardScaler

# custom feature example
def words_capitalized(sentence):
    tokens = []
    # tokenize the sentence
    tokens = word_tokenize(sentence)

    counter = 0
    for word in tokens:

        if word[0].isupper():
            counter += 1

    return counter

# custom feature example
def words_length(sentence):
    tokens = []
    # tokenize the sentence
    tokens = word_tokenize(sentence)

    list_of_length = list()
    for word in tokens:
        list_of_length.append(length(word))

    return list_of_length

def get_features(untagged_text, value, scaler):

    # this function extracts the custom features
    # transforms the vectorizer
    # scales the features
    # and finally stacks all of them

    list_of_length = list()
    list_of_capitals = list()

    # transform vectorizer
    X_bow = countVecWord.transform(untagged_text)

    # I also see some people use X_bow = countVecWord.transform(untagged_text).todense(), what does the .todense() option do here?

    for sentence in untagged_text:
        list_of_urls.append([words_length(sentence)])
        list_of_capitals.append([words_capitalized(sentence)])

    # turn the feature output into a numpy vector
    X_length = numpy.array(list_of_urls)
    X_capitals = numpy.array(list_of_capitals)

    if value == 1:
        # fit transform for training set
        X_length = = scaler.fit_transform(X_length)
        X_capitals = scaler.fit_transform(X_capitals)
    # if test set
    else:
        # transform only for test set
        X_length = = scaler.transform(X_length)
        X_capitals = scaler.transform(X_capitals)

    # stack all features as a sparse matrix
    X_two_bows = scipy.sparse.hstack((X_bow, X_length))
    X_two_bows = scipy.sparse.hstack((X_two_bows , X_length))
    X_two_bows = scipy.sparse.hstack((X_two_bows , X_capitals))

    return X_two_bows

def fit_and_predict(train_labels, train_features, test_features, classifier):

    # fit the training set
    classifier.fit(train_features, train_labels)

    # return the classification result
    return classifier.predict(test_features)

if  __name__ == '__main__':

    input_sets = read_data()

    X = input_sets[0] 
    Y = input_sets[1] 
    X_dev = input_sets[2] 
    Y_dev = input_sets[3] 

    # initialize the count vectorizer
    countVecWord = sklearn.feature_extraction.text.CountVectorizer(ngram_range=(1, 3))

    scaler= StandardScaler()

    # extract features

    # for training
    X_total = get_features(X, 1, scaler)

    # for dev set
    X_total_dev = get_features(X_dev,  2, scaler)

    # store labels as numpy array
    y_train = numpy.asarray(Y)
    y_dev = numpy.asarray(Y_dev)

    # train the classifier
    SVC1 = LinearSVC(C = 1.0)

    y_predicted = list()
    y_predicted = fit_and_predict(y_train, X_total, X_total_dev, SVC1)

    print "Result for dev set"
    precision, recall, f1, _ = metrics.precision_recall_fscore_support(y_dev, y_predicted)
    print "Precision: ", precision, " Recall: ", recall, " F1-Score: ", f1

我知道有 FeatureUnion,但我不知道它是否可以用于我的目的以及它是否会缩放和 hstack 特征。

编辑:这似乎是一个好的开始:https://michelleful.github.io/code-blog/2015/06/20/pipelines/

还没试过,等我试了会post。现在的问题是,如何使用管道进行特征选择。

对于任何感兴趣的人,自定义特征 Class 需要具有拟合和变换功能,然后才能在 FeatureUnion 中使用。有关详细示例,请在此处查看我的其他问题 >