返回 Pandas 中按名称过滤的列的最后一个值

Returning last value of a column filtered by name in Pandas

我有这样的数据集:

DATE,OPTION,SELL,BUY,DEAL
2015-01-01 11:00:01, blah1,0,1,open
2015-01-01 11:00:01, blah2,0,1,open
2015-01-01 11:00:01, blah3,0,1,open
2015-01-01 11:00:02, blah1,0,1,open
2015-01-01 11:00:02, blah2,0,1,open
2015-01-01 11:00:02, blah3,0,1,open

我在 pandas 中阅读它使用:

df = pd.DataFrame.from_csv(csv_data)

没问题。

你如何return last "SELL""blah2" ?

谢谢

(df[df['OPTION'] == 'blah2']).tail(1)['SELL']

获取所有期权的最后卖出价:

df[['SELL','OPTION']].groupby("OPTION").apply(lambda x: x.tail(1))

您可以按 OPTION 对其进行分组并获取给定组的最后一行,如下所示:

import pandas as pd

df = pd.read_csv('data.csv')

grouped_df = df.groupby('OPTION')

print(grouped_df.get_group(' blah2').tail(1))

这给出:

4  2015-01-01 11:00:02   blah2     0    1  open

b[b['OPTION']=='blah2'].iloc[-1]['SELL']

有一个方便的方法last可以在groupby对象上调用,这个returns每个组的最后一个值,然后我们可以在索引值上过滤这个df:

In [75]:

gp = df.groupby('OPTION').last()
gp
Out[75]:
                       DATE  SELL  BUY  DEAL
OPTION                                      
 blah1  2015-01-01 11:00:02     0    1  open
 blah2  2015-01-01 11:00:02     0    1  open
 blah3  2015-01-01 11:00:02     0    1  open
In [76]:

gp[gp.index == ' blah2']
Out[76]:
                       DATE  SELL  BUY  DEAL
OPTION                                      
 blah2  2015-01-01 11:00:02     0    1  open