使用递归算法求解背包
Solving Knapsack using recursive algorithm
所以,我正在尝试从我们的课本中实现这个算法。
我写了这个:
// Knapsack_memoryfunc.cpp : Defines the entry point for the console application.
//Solving Knapsack problem using dynamic programmig and Memory function
#include "stdafx.h"
#include "iostream"
#include "iomanip"
using namespace std;
int table[20][20] = { 0 };
int value, n, wt[20], val[20], max_wt;
// ---CONCERNED FUNCTION-----
int MNSack(int i, int j)
{
value = 0;
if (table[i][j] < 0)
if (j < wt[i])
value = MNSack(i - 1, j);
else
value = fmax(MNSack(i - 1, j), val[i] + MNSack(i - 1, j - wt[i]));
table[i][j] = value;
return table[i][j];
}
// --------------------------
void items_picked(int n, int max_wt)
{
cout << "\n Items picked : " << endl;
while (n > 0)
{
if (table[n][max_wt] == table[n - 1][max_wt]) // if value doesnot change in table column-wise, item isn't selected
n--; // n-- goes to next item
else // if it changes, it is selected
{
cout << " Item " << n << endl;
max_wt -= wt[n]; // removing weight from total available (max_wt)
n--; // next item
}
}
}
int main()
{
cout << " Enter the number of items : ";
cin >> n;
cout << " Enter the Maximum weight : ";
cin >> max_wt;
cout << endl;
for (int i = 1; i <= n; i++)
{
cout << " Enter weight and value of item " << i << " : ";
cin >> wt[i] >> val[i];
}
for (int i = 0; i <= n; i++)
for (int j = 0; j <= max_wt; j++)
table[i][j] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= max_wt; j++)
table[i][j] = -1;
cout << " Optimum value : " << MNSack(n, max_wt);
cout << " \n Table : \n";
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= max_wt; j++)
if (table[i][j] == -1)
cout << setw(5) << "-";
else
cout << setw(5) << table[i][j];
cout << endl;
}
items_picked(n, max_wt);
return 0;
}
这是问题和输出:
它在某些地方似乎是正确的,例如最佳值,但并不完全可以接受。
我试过调试它,但是使用递归函数很难。有人可以帮忙吗?
int MNSack(int i, int j)
{
value = 0;
if (table[i][j] < 0)
{
if (j < wt[i])
value = MNSack(i - 1, j);
else
value = max(MNSack(i - 1, j), val[i] + MNSack(i - 1, j - wt[i]));
table[i][j] = value;
}
return table[i][j];
}
问题就出在这里。当您的 table 项大于或等于 0 时,您将跳过递归但仍将 table 项设置为 0,如果您的 table 项大于0.
您只需要在 table 项目需要更改时更新它,所以将其放在大括号中将更正此问题。
自下而上的解决方案。
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
int main()
{
int table[20][20] = { 0 };
int value, n, wt[20], val[20], max_wt;
cout << " Enter the number of items : ";
cin >> n;
cout << " Enter the Maximum weight : ";
cin >> max_wt;
cout << endl;
for (int i = 1; i <= n; i++)
{
cout << " Enter weight and value of item " << i << " : ";
cin >> wt[i] >> val[i];
}
// Initialization
for (int i = 0; i <= n; i++)
for (int j = 0; j <= max_wt; j++)
table[i][j] = 0;
// In practice, this can be skipped in a bottom up solution
for (int i = 1; i <= n; i++)
for (int j = 1; j <= max_wt; j++)
table[i][j] = -1;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= max_wt; j++)
{
if (j < wt[i])
table[i][j] = table[i - 1][j];
else
table[i][j] = max(table[i - 1][j], val[i] + table[i - 1][j - wt[i]]);
}
}
cout << " Optimum value : " << table[n][max_wt] << endl;
cout << " \n Table : \n";
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= max_wt; j++)
if (table[i][j] == -1)
cout << setw(5) << "-";
else
cout << setw(5) << table[i][j];
cout << endl;
}
return 0;
}
您可以看到这将递归更改为循环,因此避免了全局变量。它还使代码更简单,这样您就可以避免检查 table 项是否有效(在您的示例中等于 -1)。
这个解决方案的缺点是,它总是遍历所有可能的节点。但是它获得了每个项目更好的系数,因为递归和双重检查 table 项目成本更高。自上而下和自下而上的复杂度都是O(n^2),很难说哪个更快。
所以,我正在尝试从我们的课本中实现这个算法。
我写了这个:
// Knapsack_memoryfunc.cpp : Defines the entry point for the console application.
//Solving Knapsack problem using dynamic programmig and Memory function
#include "stdafx.h"
#include "iostream"
#include "iomanip"
using namespace std;
int table[20][20] = { 0 };
int value, n, wt[20], val[20], max_wt;
// ---CONCERNED FUNCTION-----
int MNSack(int i, int j)
{
value = 0;
if (table[i][j] < 0)
if (j < wt[i])
value = MNSack(i - 1, j);
else
value = fmax(MNSack(i - 1, j), val[i] + MNSack(i - 1, j - wt[i]));
table[i][j] = value;
return table[i][j];
}
// --------------------------
void items_picked(int n, int max_wt)
{
cout << "\n Items picked : " << endl;
while (n > 0)
{
if (table[n][max_wt] == table[n - 1][max_wt]) // if value doesnot change in table column-wise, item isn't selected
n--; // n-- goes to next item
else // if it changes, it is selected
{
cout << " Item " << n << endl;
max_wt -= wt[n]; // removing weight from total available (max_wt)
n--; // next item
}
}
}
int main()
{
cout << " Enter the number of items : ";
cin >> n;
cout << " Enter the Maximum weight : ";
cin >> max_wt;
cout << endl;
for (int i = 1; i <= n; i++)
{
cout << " Enter weight and value of item " << i << " : ";
cin >> wt[i] >> val[i];
}
for (int i = 0; i <= n; i++)
for (int j = 0; j <= max_wt; j++)
table[i][j] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= max_wt; j++)
table[i][j] = -1;
cout << " Optimum value : " << MNSack(n, max_wt);
cout << " \n Table : \n";
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= max_wt; j++)
if (table[i][j] == -1)
cout << setw(5) << "-";
else
cout << setw(5) << table[i][j];
cout << endl;
}
items_picked(n, max_wt);
return 0;
}
这是问题和输出:
它在某些地方似乎是正确的,例如最佳值,但并不完全可以接受。 我试过调试它,但是使用递归函数很难。有人可以帮忙吗?
int MNSack(int i, int j)
{
value = 0;
if (table[i][j] < 0)
{
if (j < wt[i])
value = MNSack(i - 1, j);
else
value = max(MNSack(i - 1, j), val[i] + MNSack(i - 1, j - wt[i]));
table[i][j] = value;
}
return table[i][j];
}
问题就出在这里。当您的 table 项大于或等于 0 时,您将跳过递归但仍将 table 项设置为 0,如果您的 table 项大于0.
您只需要在 table 项目需要更改时更新它,所以将其放在大括号中将更正此问题。
自下而上的解决方案。
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
int main()
{
int table[20][20] = { 0 };
int value, n, wt[20], val[20], max_wt;
cout << " Enter the number of items : ";
cin >> n;
cout << " Enter the Maximum weight : ";
cin >> max_wt;
cout << endl;
for (int i = 1; i <= n; i++)
{
cout << " Enter weight and value of item " << i << " : ";
cin >> wt[i] >> val[i];
}
// Initialization
for (int i = 0; i <= n; i++)
for (int j = 0; j <= max_wt; j++)
table[i][j] = 0;
// In practice, this can be skipped in a bottom up solution
for (int i = 1; i <= n; i++)
for (int j = 1; j <= max_wt; j++)
table[i][j] = -1;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= max_wt; j++)
{
if (j < wt[i])
table[i][j] = table[i - 1][j];
else
table[i][j] = max(table[i - 1][j], val[i] + table[i - 1][j - wt[i]]);
}
}
cout << " Optimum value : " << table[n][max_wt] << endl;
cout << " \n Table : \n";
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= max_wt; j++)
if (table[i][j] == -1)
cout << setw(5) << "-";
else
cout << setw(5) << table[i][j];
cout << endl;
}
return 0;
}
您可以看到这将递归更改为循环,因此避免了全局变量。它还使代码更简单,这样您就可以避免检查 table 项是否有效(在您的示例中等于 -1)。
这个解决方案的缺点是,它总是遍历所有可能的节点。但是它获得了每个项目更好的系数,因为递归和双重检查 table 项目成本更高。自上而下和自下而上的复杂度都是O(n^2),很难说哪个更快。