R:事件的高效提取(连续增加一个变量)
R: Efficient extraction of events (continuous increase in a variable)
任务是有效地从此数据中提取事件:
data <- structure(
list(i = c(1, 1, 1, 2, 2, 2), t = c(1, 2, 3, 1, 3, 4), x = c(1, 1, 2, 1, 2, 3)),
.Names = c("i", "t", "x"), row.names = c(NA, -6L), class = "data.frame"
)
> data
i t x
1 1 1 1
2 1 2 1
3 1 3 2
4 2 1 1
5 2 3 2
6 2 4 3
我们称i
个事实,t
是时间,x
是i
在t
处的选择数。
一个事件是对一个事实的不间断选择序列。在整个 t=1 到 t=3 期间,事实 1 被选中,总计有 4 次选择。但事实 2 分为两个事件,第一个是从 t=1 到 t=1(sum=1),第二个是从 t=3 到 t=4(sum=5)。因此,事件数据框应该如下所示:
> event
i from to sum
1 1 1 3 4
2 2 1 1 1
3 2 3 4 5
此代码执行所需的操作:
event <- structure(
list(i = logical(0), from = logical(0), to = logical(0), sum = logical(0)),
.Names = c("i", "from", "to", "sum"), row.names = integer(0),
class = "data.frame"
)
l <- nrow(data) # get rows of data frame
c <- 1 # set counter
d <- 1 # set initial row of data to start with
e <- 1 # set initial row of event to fill
repeat{
event[e,1] <- data[d,1] # store "i" in event data frame
event[e,2] <- data[d,2] # store "from" in event data frame
while((data[d+1,1] == data[d,1]) & (data[d+1,2] == data[d,2]+1)){
c <- c+1
d <- d+1
if(d >= l) break
}
event[e,3] <- data[d,2] # store "to" in event data frame
event[e,4] <- sum(data[(d-c+1):d,3]) # store "sum" in event data frame
c <- 1
d <- d+1
e <- e+1
}
问题是此代码需要 3 天时间从具有 100 万行的数据框中提取事件,而我的数据框有 500 万行。
如何提高效率?
P.S.: 我的代码中还有一个与终止相关的小错误。
P.P.S.:数据先按i排序,再按t排序。
假设数据框是按照data$t
排序的,你可以试试这样
event <- NULL
for (i in unique(data$i)) {
x <- data[data$i == i, ]
ev <- cumsum(c(1, diff(x$t)) > 1)
smry <- lapply(split(x, ev), function(z) c(i, range(z$t), sum(z$x)))
event <- c(event, smry)
}
event <- do.call(rbind, event)
rownames(event) <- NULL
colnames(event) <- c('i', 'from', 'to', 'sum')
结果是矩阵,不是数据框。
如果这个 dplyr 实现更快,你能试试吗?
library(dplyr)
data <- structure(
list(fact = c(1, 1, 1, 2, 2, 2), timing = c(1, 2, 3, 1, 3, 4), x = c(1, 1, 2, 1, 2, 3)),
.Names = c("fact", "timing", "x"), row.names = c(NA, -6L), class = "data.frame"
)
group_by(data, fact) %>%
mutate(fromto=cumsum(c(0, diff(timing) > 1))) %>%
group_by(fact, fromto) %>%
summarize(from=min(timing), to=max(timing), sumx=sum(x)) %>%
select(-fromto) %>%
ungroup()
这个data.table实施怎么样?
library(data.table)
data <- structure(
list(fact = c(1, 1, 1, 2, 2, 2), timing = c(1, 2, 3, 1, 3, 4), x = c(1, 1, 2, 1, 2, 3)),
.Names = c("fact", "timing", "x"), row.names = c(NA, -6L), class = "data.frame"
)
setDT(data)[, fromto:=cumsum(c(0, diff(timing) > 1)), by=fact]
event <- data[, .(from=min(timing), to=max(timing), sumx=sum(x)), by=c("fact", "fromto")][,fromto:=NULL]
##results when i enter event in the R console and my data.table package version is data.table_1.9.6
> event
fact from to sumx
1: 1 1 3 4
2: 2 1 1 1
3: 2 3 4 5
> str(event)
Classes ‘data.table’ and 'data.frame': 3 obs. of 4 variables:
$ fact: num 1 2 2
$ from: num 1 1 3
$ to : num 3 1 4
$ sumx: num 4 1 5
- attr(*, ".internal.selfref")=<externalptr>
> dput(event)
structure(list(fact = c(1, 2, 2), from = c(1, 1, 3), to = c(3,
1, 4), sumx = c(4, 1, 5)), row.names = c(NA, -3L), class = c("data.table",
"data.frame"), .Names = c("fact", "from", "to", "sumx"), .internal.selfref = <pointer: 0x0000000000120788>)
参考
detect intervals of the consequent integer sequences
任务是有效地从此数据中提取事件:
data <- structure(
list(i = c(1, 1, 1, 2, 2, 2), t = c(1, 2, 3, 1, 3, 4), x = c(1, 1, 2, 1, 2, 3)),
.Names = c("i", "t", "x"), row.names = c(NA, -6L), class = "data.frame"
)
> data
i t x
1 1 1 1
2 1 2 1
3 1 3 2
4 2 1 1
5 2 3 2
6 2 4 3
我们称i
个事实,t
是时间,x
是i
在t
处的选择数。
一个事件是对一个事实的不间断选择序列。在整个 t=1 到 t=3 期间,事实 1 被选中,总计有 4 次选择。但事实 2 分为两个事件,第一个是从 t=1 到 t=1(sum=1),第二个是从 t=3 到 t=4(sum=5)。因此,事件数据框应该如下所示:
> event
i from to sum
1 1 1 3 4
2 2 1 1 1
3 2 3 4 5
此代码执行所需的操作:
event <- structure(
list(i = logical(0), from = logical(0), to = logical(0), sum = logical(0)),
.Names = c("i", "from", "to", "sum"), row.names = integer(0),
class = "data.frame"
)
l <- nrow(data) # get rows of data frame
c <- 1 # set counter
d <- 1 # set initial row of data to start with
e <- 1 # set initial row of event to fill
repeat{
event[e,1] <- data[d,1] # store "i" in event data frame
event[e,2] <- data[d,2] # store "from" in event data frame
while((data[d+1,1] == data[d,1]) & (data[d+1,2] == data[d,2]+1)){
c <- c+1
d <- d+1
if(d >= l) break
}
event[e,3] <- data[d,2] # store "to" in event data frame
event[e,4] <- sum(data[(d-c+1):d,3]) # store "sum" in event data frame
c <- 1
d <- d+1
e <- e+1
}
问题是此代码需要 3 天时间从具有 100 万行的数据框中提取事件,而我的数据框有 500 万行。
如何提高效率?
P.S.: 我的代码中还有一个与终止相关的小错误。
P.P.S.:数据先按i排序,再按t排序。
假设数据框是按照data$t
排序的,你可以试试这样
event <- NULL
for (i in unique(data$i)) {
x <- data[data$i == i, ]
ev <- cumsum(c(1, diff(x$t)) > 1)
smry <- lapply(split(x, ev), function(z) c(i, range(z$t), sum(z$x)))
event <- c(event, smry)
}
event <- do.call(rbind, event)
rownames(event) <- NULL
colnames(event) <- c('i', 'from', 'to', 'sum')
结果是矩阵,不是数据框。
如果这个 dplyr 实现更快,你能试试吗?
library(dplyr)
data <- structure(
list(fact = c(1, 1, 1, 2, 2, 2), timing = c(1, 2, 3, 1, 3, 4), x = c(1, 1, 2, 1, 2, 3)),
.Names = c("fact", "timing", "x"), row.names = c(NA, -6L), class = "data.frame"
)
group_by(data, fact) %>%
mutate(fromto=cumsum(c(0, diff(timing) > 1))) %>%
group_by(fact, fromto) %>%
summarize(from=min(timing), to=max(timing), sumx=sum(x)) %>%
select(-fromto) %>%
ungroup()
这个data.table实施怎么样?
library(data.table)
data <- structure(
list(fact = c(1, 1, 1, 2, 2, 2), timing = c(1, 2, 3, 1, 3, 4), x = c(1, 1, 2, 1, 2, 3)),
.Names = c("fact", "timing", "x"), row.names = c(NA, -6L), class = "data.frame"
)
setDT(data)[, fromto:=cumsum(c(0, diff(timing) > 1)), by=fact]
event <- data[, .(from=min(timing), to=max(timing), sumx=sum(x)), by=c("fact", "fromto")][,fromto:=NULL]
##results when i enter event in the R console and my data.table package version is data.table_1.9.6
> event
fact from to sumx
1: 1 1 3 4
2: 2 1 1 1
3: 2 3 4 5
> str(event)
Classes ‘data.table’ and 'data.frame': 3 obs. of 4 variables:
$ fact: num 1 2 2
$ from: num 1 1 3
$ to : num 3 1 4
$ sumx: num 4 1 5
- attr(*, ".internal.selfref")=<externalptr>
> dput(event)
structure(list(fact = c(1, 2, 2), from = c(1, 1, 3), to = c(3,
1, 4), sumx = c(4, 1, 5)), row.names = c(NA, -3L), class = c("data.table",
"data.frame"), .Names = c("fact", "from", "to", "sumx"), .internal.selfref = <pointer: 0x0000000000120788>)
参考 detect intervals of the consequent integer sequences