在 for 循环中使用 pandas .append

Using pandas .append within for loop

我在 for 循环中将行附加到 pandas DataFrame,但最后数据框始终为空。我不想将行添加到数组然后调用 DataFrame 构造函数,因为我的实际 for 循环处理大量数据。我也试过 pd.concat 没有成功。任何人都可以强调我缺少什么来使附加语句起作用吗?这是一个虚拟示例:

import pandas as pd
import numpy as np

data = pd.DataFrame([])

for i in np.arange(0, 4):
    if i % 2 == 0:
        data.append(pd.DataFrame({'A': i, 'B': i + 1}, index=[0]), ignore_index=True)
    else:
        data.append(pd.DataFrame({'A': i}, index=[0]), ignore_index=True)

print data.head()

Empty DataFrame
Columns: []
Index: []
[Finished in 0.676s]

您需要将变量 data 设置为等于附加的数据框。与 python 列表中的 append 方法不同,pandas append 不会就地发生

import pandas as pd
import numpy as np

data = pd.DataFrame([])

for i in np.arange(0, 4):
    if i % 2 == 0:
        data = data.append(pd.DataFrame({'A': i, 'B': i + 1}, index=[0]), ignore_index=True)
    else:
        data = data.append(pd.DataFrame({'A': i}, index=[0]), ignore_index=True)

print(data.head())

   A    B
0  0  1.0
1  2  3.0
2  3  NaN

注意: 此答案旨在回答提出的问题。然而,它不是组合大量数据帧的最佳策略。要获得更优化的解决方案,请查看下面的

每次调用追加时,Pandas returns 原始数据框的副本加上新行。这称为二次复制,这是一个 O(N^2) 操作,很快就会变得非常慢(尤其是当您有大量数据时)。

对于您的情况,我建议使用列表,附加到列表,然后调用数据框构造函数。

a_list = []
b_list = []
for data in my_data:
    a, b = process_data(data)
    a_list.append(a)
    b_list.append(b)
df = pd.DataFrame({'A': a_list, 'B': b_list})
del a_list, b_list

时间

%%timeit
data = pd.DataFrame([])
for i in np.arange(0, 10000):
    if i % 2 == 0:
        data = data.append(pd.DataFrame({'A': i, 'B': i + 1}, index=[0]), ignore_index=True)
else:
    data = data.append(pd.DataFrame({'A': i}, index=[0]), ignore_index=True)
1 loops, best of 3: 6.8 s per loop

%%timeit
a_list = []
b_list = []
for i in np.arange(0, 10000):
    if i % 2 == 0:
        a_list.append(i)
        b_list.append(i + 1)
    else:
        a_list.append(i)
        b_list.append(None)
data = pd.DataFrame({'A': a_list, 'B': b_list})
100 loops, best of 3: 8.54 ms per loop

您可以在没有循环的情况下构建数据框:

n = 4
data = pd.DataFrame({'A': np.arange(n)})
data['B'] = np.NaN
data.loc[data['A'] % 2 == 0, 'B'] = data['A'] + 1

对于:

n = 10000

这个有点快:

%%timeit
data = pd.DataFrame({'A': np.arange(n)})
data['B'] = np.NaN
data.loc[data['A'] % 2 == 0, 'B'] = data['A'] + 1

100 loops, best of 3: 3.3 ms per loop

对比

%%timeit
a_list = []
b_list = []
for i in np.arange(n):
    if i % 2 == 0:
        a_list.append(i)
        b_list.append(i + 1)
    else:
        a_list.append(i)
        b_list.append(None)
data1 = pd.DataFrame({'A': a_list, 'B': b_list})

100 loops, best of 3: 12.4 ms per loop