MATLAB-灰度图像中的小鼠分割,对阴影具有不变性

MATLAB- mices segmentation in grayscale images, which is invariant to shadows

找了两三天,还是没有找到解决问题的方法。

我想创建一个没有阴影的鼠标分段。问题是,如果我设法去除阴影,我也会去除尾巴和足部,这是一个问题。阴影来自鼠标所在的竞技场的墙壁。

我想从灰度图像中去除阴影,但我不知道该怎么做。首先我去掉了图片的背景,得到了下图。

edit1 : 感谢您的回答它在阴影不接触鼠标时运行良好。这就是我得到的:

来自这张原始图片:

我正在从一个 tif 文件中提取每一帧,并为每一帧应用您的代码。这是我使用的代码:

for k=1:1000

    %reads image
    I = imread('souris3.tif',k);

    %first stage: perform thesholding and fill holes

    seg = I >20000;
    seg = imfill(seg,'holes');

    %fixes the missing tail problem
    %extract edges, and add them to the segmentation.
    edges =  edge(I);
    seg = seg | edges;

    %fill holes (again)
    seg = imfill(seg,'holes'); 

    %find all the connected components
    CC = bwconncomp(seg,8);

    %keeps only the biggest CC
    numPixels = cellfun(@numel,CC.PixelIdxList);
    [biggest,idx] = max(numPixels);
    seg = zeros(size(edges));
    seg(CC.PixelIdxList{idx}) = 1;

    imshow(seg);

end

我用命令impixelinfo选择20000作为step,因为图像在uint16并且是鼠标的平均值。

这是 link 如果你想要 tif 文件:

souris3.tif

感谢您的帮助。

我建议采用以下方法:

  1. 对图像执行阈值处理,得到一个包含大部分老鼠body但没有尾巴和腿的蒙版。
  2. 使用MATLAB的imfill函数进行孔洞填充。在这个阶段,分割几乎是完美的,除了尾巴的一部分缺失。
  3. 使用边缘图来找到尾巴的边界。这可以通过将边缘图添加到分割并再次执行孔填充来完成。在此阶段只保留最大的连通分量。

代码:

%reads image
I = rgb2gray(imread('mSWm4.png'));

%defines thersholds (you may want to tweak these thresholds, or find
%a way to calculate it automatically).
FIRST_STAGE_THRESHOLD = 70;
IM_BOUNDARY_RELEVANCE_THRESHOLD = 10;

%perform thesholding and fill holes, the tail is still missing
seg = I > FIRST_STAGE_THRESHOLD;
seg = imfill(seg,'holes');

%second stage fix the missing tail problem:
%extract edges from relevant areas (in which the matter is not too dark), and add them to the segmentation.
%the boundries of the image which are close enough to edges are also considered as edges
edges =  edge(I);
imageBoundries = ones(size(I));
imageBoundries(2:end-1,2:end-1) = 0;
relevantDistFromEdges = bwdist(edges) > IM_BOUNDARY_RELEVANCE_THRESHOLD;
imageBoundries(bwdist(edges) > IM_BOUNDARY_RELEVANCE_THRESHOLD) = 0;
seg = seg | (edges | imageBoundries);

%fill holes (again) and perform noise cleaning
seg = imfill(seg,'holes');
seg = getBiggestCC(imopen(seg,strel('disk',1)));

getBiggestCC 函数:

function [ res ] = getBiggestCC(mask)
CC = bwconncomp(mask,8);
numPixels = cellfun(@numel,CC.PixelIdxList);
[~,idx] = max(numPixels);
res = zeros(size(mask));
res(CC.PixelIdxList{idx}) = 1;
end

结果

每个阶段的结果:

结果 图片 1 结果:

图片 2 结果:

另一种视图(分段为红色):