如何在使用递归时增加 3 个不同路径的数字?
How to increment a number for 3 different paths while using recursion?
我有一个程序可以打印图形的所有可达路径。它包含 2 类 GraphPath1
和 Search
。程序如下:
Class GraphPath1:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
public class GraphPath1 {
List<String> src=new ArrayList<String>(); // source node
List<String> dest=new ArrayList<String>(); // destination node
private Map<String, LinkedHashSet<String>> map = new HashMap();
public void addEdge(String node1, String node2){
LinkedHashSet<String> adjacent = map.get(node1);
if(adjacent==null) {
adjacent = new LinkedHashSet();
map.put(node1, adjacent);
src.add(node1);
}
adjacent.add(node2);
dest.add(node2);
}
public LinkedList<String> adjacentNodes(String last) {
LinkedHashSet<String> adjacent = map.get(last);
if(adjacent==null) {
return new LinkedList();
}
return new LinkedList<String>(adjacent);
}
}
Class 搜索:
import java.util.ArrayList;
import dfs.GraphPath1;
import java.util.LinkedList;
import java.util.List;
import dfs.LoanSystem;
public class Search {
private static final String START = "1";
private static final String END = "7";
public static void main(String[] args) {
// this graph is directional
GraphPath1 graph = new GraphPath1();
graph.addEdge("1", "2");
graph.addEdge("1", "3");
graph.addEdge("2", "5");
graph.addEdge("3", "4");
graph.addEdge("4", "5");
graph.addEdge("4", "6");
graph.addEdge("5", "7");
graph.addEdge("6", "7");
//graph.addEdge("7", "1");
/*
List<String> s = graph.src;
List<String> d = graph.dest;
System.out.print(s);
System.out.print(d);*/
LinkedList<String> visited = new LinkedList();
visited.add(START);
new Search().DFS(graph, visited);
}
private void DFS(GraphPath1 graph, LinkedList<String> visited) {
LinkedList<String> nodes = graph.adjacentNodes(visited.getLast());
// examine adjacent nodes
for (String node : nodes) {
if (visited.contains(node)) {
continue;
}
if (node.equals(END)) {
visited.add(node);
printPath(visited);
visited.removeLast();
break;
}
}
// in DFS, recursion needs to come after visiting adjacent nodes
for (String node : nodes) {
if (visited.contains(node) || node.equals(END)) {
continue;
}
visited.addLast(node);
DFS(graph, visited);
visited.removeLast();
}
}
/*
public List<Edge> getEdgeList (LinkedList<String> visited){
List<Edge> edges = new ArrayList<Edge>();
for(int i=0;i<=visited.size();i++)
edges.add(new Edge(visited.get(i), visited.get(i+1)));
return edges;
}
*/
private void printPath(LinkedList<String> visited) {
ArrayList<String> sequence = new ArrayList<String>();
{
for (String node : visited) {
sequence.add(node);
}
}
ArrayList<String> sequences = new ArrayList<String>();
sequences.addAll(sequence);
System.out.println(sequences);
}
}
这个程序的输出是:
1,2,5,7
1,3,4,5,7
1,3,4,6,7
现在我需要为这 3 条路径打印 3 条不同的消息。例如:
This is Path 1:
1,2,5,7
This is Path 2:
1,3,4,5,7
This is Path 3:
1,3,4,6,7
但我不知道该怎么做。谁能告诉我如何为 3 条不同的路径增加我在消息中使用的数字(即这是路径 1:)?
这并不难做到。您只需要一个计数器变量来跟踪您当前正在打印的路径。在您的情况下,您可以在调用 DFS()
函数之前将计数器设置为 0。然后在每次打印之前递增它,然后打印你的行说明它是哪条路径。之后你调用 printPath()
。这可能看起来像这样:
private int pathCount = 0;
// more of you code ...
private void DFS(GraphPath1 graph, LinkedList<String> visited) {
LinkedList<String> nodes = graph.adjacentNodes(visited.getLast());
// examine adjacent nodes
for (String node : nodes) {
if (visited.contains(node)) {
continue;
}
if (node.equals(END)) {
visited.add(node);
pathNumber++;
System.out.println("This is path " + pathNumber + ":");
printPath(visited);
visited.removeLast();
break;
}
}
// the rest of the algorithm ...
}
还有一点:如果你让DFS成为一个静态函数(private static void DFS(...)
),你可以直接从主函数中调用它,而不必创建Search的实例class 和 new Search().DFS(graph, visited);
可以变成 DFS(graph, visited);
.
由于我们现在使用实例变量来跟踪路径计数,因此每次搜索一个搜索实例 class 就是我们想要的。
编辑:重写代码片段以在函数中使用实例变量而不是局部变量,因为函数是递归的,所以这不起作用。感谢 Andreas 指出这一点。
首先,您有原始类型。不要!!!!
例如。将 adjacent = new LinkedHashSet();
更改为 adjacent = new LinkedHashSet<>();
如果你用的好IDE,应该早就告诉你了
通常,您希望搜索到 return 结果,而不是打印它,否则您无法编写任何 needs/uses 结果的代码.
这意味着您需要一个结果收集器,并将其作为参数传递给递归方法。搜索完成后打印结果。
还有:
DFS
可以制作成static
.
可以统一处理END
和递归调用
ArrayDeque
更适合 visited
。
在执行递归方法时,将其隔离在入口方法后面通常是个好主意,因此调用者不必知道递归所需的额外参数(例如 visited
).
START
和 END
应作为 DFS
的参数,因此如果需要,您可以在同一个图形上执行多个搜索。
你的printPath
方法好像有点过分了
public final class Search {
public static void main(String[] args) {
GraphPath1 graph = new GraphPath1();
graph.addEdge("1", "2");
graph.addEdge("1", "3");
graph.addEdge("2", "5");
graph.addEdge("3", "4");
graph.addEdge("4", "5");
graph.addEdge("4", "6");
graph.addEdge("5", "7");
graph.addEdge("6", "7");
graph.addEdge("7", "1");
searchAndPrint(graph, "1", "1");
searchAndPrint(graph, "3", "2");
searchAndPrint(graph, "1", "7");
}
private static void searchAndPrint(GraphPath1 graph, String start, String end) {
List<List<String>> result = DFS(graph, start, end);
for (int i = 0; i < result.size(); i++)
System.out.printf("This is Path %d: %s%n", i + 1, result.get(i));
}
private static List<List<String>> DFS(GraphPath1 graph, String start, String end) {
if (start.equals(end))
return Collections.singletonList(Collections.singletonList(start));
List<List<String>> result = new ArrayList<>();
Deque<String> visited = new ArrayDeque<>();
visited.add(start);
DFS(graph, end, visited, result);
return result;
}
private static void DFS(GraphPath1 graph, String end, Deque<String> visited, List<List<String>> result) {
for (String node : graph.adjacentNodes(visited.getLast()))
if (! visited.contains(node)) {
visited.addLast(node);
if (node.equals(end))
result.add(new ArrayList<>(visited)); // add copy to result
else
DFS(graph, end, visited, result);
visited.removeLast();
}
}
}
输出
This is Path 1: [1]
This is Path 1: [3, 4, 5, 7, 1, 2]
This is Path 2: [3, 4, 6, 7, 1, 2]
This is Path 1: [1, 2, 5, 7]
This is Path 2: [1, 3, 4, 5, 7]
This is Path 3: [1, 3, 4, 6, 7]
我有一个程序可以打印图形的所有可达路径。它包含 2 类 GraphPath1
和 Search
。程序如下:
Class GraphPath1:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
public class GraphPath1 {
List<String> src=new ArrayList<String>(); // source node
List<String> dest=new ArrayList<String>(); // destination node
private Map<String, LinkedHashSet<String>> map = new HashMap();
public void addEdge(String node1, String node2){
LinkedHashSet<String> adjacent = map.get(node1);
if(adjacent==null) {
adjacent = new LinkedHashSet();
map.put(node1, adjacent);
src.add(node1);
}
adjacent.add(node2);
dest.add(node2);
}
public LinkedList<String> adjacentNodes(String last) {
LinkedHashSet<String> adjacent = map.get(last);
if(adjacent==null) {
return new LinkedList();
}
return new LinkedList<String>(adjacent);
}
}
Class 搜索:
import java.util.ArrayList;
import dfs.GraphPath1;
import java.util.LinkedList;
import java.util.List;
import dfs.LoanSystem;
public class Search {
private static final String START = "1";
private static final String END = "7";
public static void main(String[] args) {
// this graph is directional
GraphPath1 graph = new GraphPath1();
graph.addEdge("1", "2");
graph.addEdge("1", "3");
graph.addEdge("2", "5");
graph.addEdge("3", "4");
graph.addEdge("4", "5");
graph.addEdge("4", "6");
graph.addEdge("5", "7");
graph.addEdge("6", "7");
//graph.addEdge("7", "1");
/*
List<String> s = graph.src;
List<String> d = graph.dest;
System.out.print(s);
System.out.print(d);*/
LinkedList<String> visited = new LinkedList();
visited.add(START);
new Search().DFS(graph, visited);
}
private void DFS(GraphPath1 graph, LinkedList<String> visited) {
LinkedList<String> nodes = graph.adjacentNodes(visited.getLast());
// examine adjacent nodes
for (String node : nodes) {
if (visited.contains(node)) {
continue;
}
if (node.equals(END)) {
visited.add(node);
printPath(visited);
visited.removeLast();
break;
}
}
// in DFS, recursion needs to come after visiting adjacent nodes
for (String node : nodes) {
if (visited.contains(node) || node.equals(END)) {
continue;
}
visited.addLast(node);
DFS(graph, visited);
visited.removeLast();
}
}
/*
public List<Edge> getEdgeList (LinkedList<String> visited){
List<Edge> edges = new ArrayList<Edge>();
for(int i=0;i<=visited.size();i++)
edges.add(new Edge(visited.get(i), visited.get(i+1)));
return edges;
}
*/
private void printPath(LinkedList<String> visited) {
ArrayList<String> sequence = new ArrayList<String>();
{
for (String node : visited) {
sequence.add(node);
}
}
ArrayList<String> sequences = new ArrayList<String>();
sequences.addAll(sequence);
System.out.println(sequences);
}
}
这个程序的输出是:
1,2,5,7
1,3,4,5,7
1,3,4,6,7
现在我需要为这 3 条路径打印 3 条不同的消息。例如:
This is Path 1:
1,2,5,7
This is Path 2:
1,3,4,5,7
This is Path 3:
1,3,4,6,7
但我不知道该怎么做。谁能告诉我如何为 3 条不同的路径增加我在消息中使用的数字(即这是路径 1:)?
这并不难做到。您只需要一个计数器变量来跟踪您当前正在打印的路径。在您的情况下,您可以在调用 DFS()
函数之前将计数器设置为 0。然后在每次打印之前递增它,然后打印你的行说明它是哪条路径。之后你调用 printPath()
。这可能看起来像这样:
private int pathCount = 0;
// more of you code ...
private void DFS(GraphPath1 graph, LinkedList<String> visited) {
LinkedList<String> nodes = graph.adjacentNodes(visited.getLast());
// examine adjacent nodes
for (String node : nodes) {
if (visited.contains(node)) {
continue;
}
if (node.equals(END)) {
visited.add(node);
pathNumber++;
System.out.println("This is path " + pathNumber + ":");
printPath(visited);
visited.removeLast();
break;
}
}
// the rest of the algorithm ...
}
还有一点:如果你让DFS成为一个静态函数(
由于我们现在使用实例变量来跟踪路径计数,因此每次搜索一个搜索实例 class 就是我们想要的。private static void DFS(...)
),你可以直接从主函数中调用它,而不必创建Search的实例class 和 new Search().DFS(graph, visited);
可以变成 DFS(graph, visited);
.
编辑:重写代码片段以在函数中使用实例变量而不是局部变量,因为函数是递归的,所以这不起作用。感谢 Andreas 指出这一点。
首先,您有原始类型。不要!!!!
例如。将 adjacent = new LinkedHashSet();
更改为 adjacent = new LinkedHashSet<>();
如果你用的好IDE,应该早就告诉你了
通常,您希望搜索到 return 结果,而不是打印它,否则您无法编写任何 needs/uses 结果的代码.
这意味着您需要一个结果收集器,并将其作为参数传递给递归方法。搜索完成后打印结果。
还有:
DFS
可以制作成static
.可以统一处理
END
和递归调用ArrayDeque
更适合visited
。在执行递归方法时,将其隔离在入口方法后面通常是个好主意,因此调用者不必知道递归所需的额外参数(例如
visited
).START
和END
应作为DFS
的参数,因此如果需要,您可以在同一个图形上执行多个搜索。你的
printPath
方法好像有点过分了
public final class Search {
public static void main(String[] args) {
GraphPath1 graph = new GraphPath1();
graph.addEdge("1", "2");
graph.addEdge("1", "3");
graph.addEdge("2", "5");
graph.addEdge("3", "4");
graph.addEdge("4", "5");
graph.addEdge("4", "6");
graph.addEdge("5", "7");
graph.addEdge("6", "7");
graph.addEdge("7", "1");
searchAndPrint(graph, "1", "1");
searchAndPrint(graph, "3", "2");
searchAndPrint(graph, "1", "7");
}
private static void searchAndPrint(GraphPath1 graph, String start, String end) {
List<List<String>> result = DFS(graph, start, end);
for (int i = 0; i < result.size(); i++)
System.out.printf("This is Path %d: %s%n", i + 1, result.get(i));
}
private static List<List<String>> DFS(GraphPath1 graph, String start, String end) {
if (start.equals(end))
return Collections.singletonList(Collections.singletonList(start));
List<List<String>> result = new ArrayList<>();
Deque<String> visited = new ArrayDeque<>();
visited.add(start);
DFS(graph, end, visited, result);
return result;
}
private static void DFS(GraphPath1 graph, String end, Deque<String> visited, List<List<String>> result) {
for (String node : graph.adjacentNodes(visited.getLast()))
if (! visited.contains(node)) {
visited.addLast(node);
if (node.equals(end))
result.add(new ArrayList<>(visited)); // add copy to result
else
DFS(graph, end, visited, result);
visited.removeLast();
}
}
}
输出
This is Path 1: [1]
This is Path 1: [3, 4, 5, 7, 1, 2]
This is Path 2: [3, 4, 6, 7, 1, 2]
This is Path 1: [1, 2, 5, 7]
This is Path 2: [1, 3, 4, 5, 7]
This is Path 3: [1, 3, 4, 6, 7]