调整和未调整的 OR 与 greg 包
Adjusted and Unadjusted OR's with greg package
我正在尝试创建一个 table 用于粗略的未调整和调整后的优势比。我的代码如下:
model<- glm(lead_ind ~ hseAge+ DurStayCat +
gender + Region +
ips_parasites, data=DfStudy2sel)
printCrudeAndAdjustedModel(model)
但是,我的输出是 table 贝塔及其置信区间。我怎样才能得到 OR,95%CI 呢?谢谢
问题是你不是在做逻辑回归而是在做普通的高斯。您需要指定您使用的是二项式族,这是一个示例:
library(datasets)
data(mtcars)
mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual"))
fit <- glm(am == "Automatic" ~ cyl + mpg, data = mtcars, family = binomial)
library(Greg)
# Drop the intercept column via the -1 as it is rarely used in logistic models
printCrudeAndAdjustedModel(fit)[-1,]
我正在尝试创建一个 table 用于粗略的未调整和调整后的优势比。我的代码如下:
model<- glm(lead_ind ~ hseAge+ DurStayCat +
gender + Region +
ips_parasites, data=DfStudy2sel)
printCrudeAndAdjustedModel(model)
但是,我的输出是 table 贝塔及其置信区间。我怎样才能得到 OR,95%CI 呢?谢谢
问题是你不是在做逻辑回归而是在做普通的高斯。您需要指定您使用的是二项式族,这是一个示例:
library(datasets)
data(mtcars)
mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual"))
fit <- glm(am == "Automatic" ~ cyl + mpg, data = mtcars, family = binomial)
library(Greg)
# Drop the intercept column via the -1 as it is rarely used in logistic models
printCrudeAndAdjustedModel(fit)[-1,]