“...:”在 Ipython console anaconda 中是什么意思?
what does " ...:" mean in Ipython console anaconda?
我正在尝试直接从 Ipython 控制台将数据帧打印到 csv 中,但我得到了这个符号,然后什么也没有“...:”。 这个符号是什么意思?
有没有办法强制我的 csv 打印?
代码:
import ET_Client
import pandas as pd
AggreateDF = pd.DataFrame()
try:
debug = False
stubObj = ET_Client.ET_Client(False, debug)
print '>>>BounceEvents'
getBounceEvent = ET_Client.ET_BounceEvent()
getBounceEvent.auth_stub = stubObj
getResponse1 = getBounceEvent.get()
ResponseResultsBounces = getResponse1.results
Results_Message = getResponse1.message
print "This is orginial " + str(Results_Message)
#print ResponseResultsBounces
i = 1
while (Results_Message == 'MoreDataAvailable'):
if i > 5: break
print Results_Message
results1 = getResponse1.results
i = i + 1
ClientIDBounces = []
partner_keys1 = []
created_dates1 = []
modified_date1 = []
ID1 = []
ObjectID1 = []
SendID1 = []
SubscriberKey1 = []
EventDate1 = []
EventType1 = []
TriggeredSendDefinitionObjectID1 = []
BatchID1 = []
SMTPCode = []
BounceCategory = []
SMTPReason = []
BounceType = []
for BounceEvent in ResponseResultsBounces:
ClientIDBounces.append(str(BounceEvent['Client']['ID']))
partner_keys1.append(BounceEvent['PartnerKey'])
created_dates1.append(BounceEvent['CreatedDate'])
modified_date1.append(BounceEvent['ModifiedDate'])
ID1.append(BounceEvent['ID'])
ObjectID1.append(BounceEvent['ObjectID'])
SendID1.append(BounceEvent['SendID'])
SubscriberKey1.append(BounceEvent['SubscriberKey'])
EventDate1.append(BounceEvent['EventDate'])
EventType1.append(BounceEvent['EventType'])
TriggeredSendDefinitionObjectID1.append(BounceEvent['TriggeredSendDefinitionObjectID'])
BatchID1.append(BounceEvent['BatchID'])
SMTPCode.append(BounceEvent['SMTPCode'])
BounceCategory.append(BounceEvent['BounceCategory'])
SMTPReason.append(BounceEvent['SMTPReason'])
BounceType.append(BounceEvent['BounceType'])
df1 = pd.DataFrame({'ClientID': ClientIDBounces, 'PartnerKey': partner_keys1,
'CreatedDate' : created_dates1, 'ModifiedDate': modified_date1,
'ID':ID1, 'ObjectID': ObjectID1,'SendID':SendID1,'SubscriberKey':SubscriberKey1,
'EventDate':EventDate1,'EventType':EventType1,'TriggeredSendDefinitionObjectID':TriggeredSendDefinitionObjectID1,
'BatchID':BatchID1,'SMTPCode':SMTPCode,'BounceCategory':BounceCategory,'SMTPReason':SMTPReason,'BounceType':BounceType})
#print(df1['ID'].max())
AggreateDF = AggreateDF.append(df1)
print(AggreateDF)
#print df1
df_masked1 = df1[(df1.EventDate > "2016-02-20") & (df1.EventDate < "2016-07-25")]
显示尺寸
当 pandas
在 iPython/Jupyter 中打印到控制台时,它使用 ...
显示输出中显示的数据行之间有数据。当数据太大而无法打印每个值时,这很有用。这是默认行为,除非您覆盖显示选项。
df = pd.DataFrame(np.random.randn(7,2))
pd.set_option('max_rows', 7)
df
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
3 0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929 1.071804
6 0.721555 -0.706771
pd.set_option('max_rows', 5)
df
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
.. ... ...
5 -0.494929 1.071804
6 0.721555 -0.706771
[7 rows x 2 columns]
我正在尝试直接从 Ipython 控制台将数据帧打印到 csv 中,但我得到了这个符号,然后什么也没有“...:”。 这个符号是什么意思?
有没有办法强制我的 csv 打印?
代码:
import ET_Client
import pandas as pd
AggreateDF = pd.DataFrame()
try:
debug = False
stubObj = ET_Client.ET_Client(False, debug)
print '>>>BounceEvents'
getBounceEvent = ET_Client.ET_BounceEvent()
getBounceEvent.auth_stub = stubObj
getResponse1 = getBounceEvent.get()
ResponseResultsBounces = getResponse1.results
Results_Message = getResponse1.message
print "This is orginial " + str(Results_Message)
#print ResponseResultsBounces
i = 1
while (Results_Message == 'MoreDataAvailable'):
if i > 5: break
print Results_Message
results1 = getResponse1.results
i = i + 1
ClientIDBounces = []
partner_keys1 = []
created_dates1 = []
modified_date1 = []
ID1 = []
ObjectID1 = []
SendID1 = []
SubscriberKey1 = []
EventDate1 = []
EventType1 = []
TriggeredSendDefinitionObjectID1 = []
BatchID1 = []
SMTPCode = []
BounceCategory = []
SMTPReason = []
BounceType = []
for BounceEvent in ResponseResultsBounces:
ClientIDBounces.append(str(BounceEvent['Client']['ID']))
partner_keys1.append(BounceEvent['PartnerKey'])
created_dates1.append(BounceEvent['CreatedDate'])
modified_date1.append(BounceEvent['ModifiedDate'])
ID1.append(BounceEvent['ID'])
ObjectID1.append(BounceEvent['ObjectID'])
SendID1.append(BounceEvent['SendID'])
SubscriberKey1.append(BounceEvent['SubscriberKey'])
EventDate1.append(BounceEvent['EventDate'])
EventType1.append(BounceEvent['EventType'])
TriggeredSendDefinitionObjectID1.append(BounceEvent['TriggeredSendDefinitionObjectID'])
BatchID1.append(BounceEvent['BatchID'])
SMTPCode.append(BounceEvent['SMTPCode'])
BounceCategory.append(BounceEvent['BounceCategory'])
SMTPReason.append(BounceEvent['SMTPReason'])
BounceType.append(BounceEvent['BounceType'])
df1 = pd.DataFrame({'ClientID': ClientIDBounces, 'PartnerKey': partner_keys1,
'CreatedDate' : created_dates1, 'ModifiedDate': modified_date1,
'ID':ID1, 'ObjectID': ObjectID1,'SendID':SendID1,'SubscriberKey':SubscriberKey1,
'EventDate':EventDate1,'EventType':EventType1,'TriggeredSendDefinitionObjectID':TriggeredSendDefinitionObjectID1,
'BatchID':BatchID1,'SMTPCode':SMTPCode,'BounceCategory':BounceCategory,'SMTPReason':SMTPReason,'BounceType':BounceType})
#print(df1['ID'].max())
AggreateDF = AggreateDF.append(df1)
print(AggreateDF)
#print df1
df_masked1 = df1[(df1.EventDate > "2016-02-20") & (df1.EventDate < "2016-07-25")]
显示尺寸
当 pandas
在 iPython/Jupyter 中打印到控制台时,它使用 ...
显示输出中显示的数据行之间有数据。当数据太大而无法打印每个值时,这很有用。这是默认行为,除非您覆盖显示选项。
df = pd.DataFrame(np.random.randn(7,2))
pd.set_option('max_rows', 7)
df
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
3 0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929 1.071804
6 0.721555 -0.706771
pd.set_option('max_rows', 5)
df
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
.. ... ...
5 -0.494929 1.071804
6 0.721555 -0.706771
[7 rows x 2 columns]