“...:”在 Ipython console anaconda 中是什么意思?

what does " ...:" mean in Ipython console anaconda?

我正在尝试直接从 Ipython 控制台将数据帧打印到 csv 中,但我得到了这个符号,然后什么也没有“...:”。 这个符号是什么意思?

有没有办法强制我的 csv 打印?

代码:

import ET_Client
import pandas as pd


AggreateDF = pd.DataFrame()

try:

    debug = False
    stubObj = ET_Client.ET_Client(False, debug)

    print '>>>BounceEvents'
    getBounceEvent = ET_Client.ET_BounceEvent()
    getBounceEvent.auth_stub = stubObj    
    getResponse1 = getBounceEvent.get()
    ResponseResultsBounces = getResponse1.results
    Results_Message = getResponse1.message
    print "This is orginial " + str(Results_Message) 
    #print ResponseResultsBounces

    i = 1
    while (Results_Message == 'MoreDataAvailable'):
        if i > 5: break
        print Results_Message
        results1 = getResponse1.results
        i = i + 1
        ClientIDBounces = []
        partner_keys1 = []
        created_dates1 = []
        modified_date1 = []
        ID1 = []
        ObjectID1 = []
        SendID1 = []
        SubscriberKey1 = []
        EventDate1 = []
        EventType1 = []
        TriggeredSendDefinitionObjectID1 = []
        BatchID1 = []
        SMTPCode = []
        BounceCategory = []
        SMTPReason = []
        BounceType = []

        for BounceEvent in ResponseResultsBounces:
            ClientIDBounces.append(str(BounceEvent['Client']['ID']))
            partner_keys1.append(BounceEvent['PartnerKey'])
            created_dates1.append(BounceEvent['CreatedDate'])
            modified_date1.append(BounceEvent['ModifiedDate'])
            ID1.append(BounceEvent['ID'])
            ObjectID1.append(BounceEvent['ObjectID'])
            SendID1.append(BounceEvent['SendID'])
            SubscriberKey1.append(BounceEvent['SubscriberKey'])
            EventDate1.append(BounceEvent['EventDate'])
            EventType1.append(BounceEvent['EventType'])
            TriggeredSendDefinitionObjectID1.append(BounceEvent['TriggeredSendDefinitionObjectID'])
            BatchID1.append(BounceEvent['BatchID'])
            SMTPCode.append(BounceEvent['SMTPCode'])
            BounceCategory.append(BounceEvent['BounceCategory'])
            SMTPReason.append(BounceEvent['SMTPReason'])
            BounceType.append(BounceEvent['BounceType'])

        df1 = pd.DataFrame({'ClientID': ClientIDBounces, 'PartnerKey': partner_keys1,
                       'CreatedDate' : created_dates1, 'ModifiedDate': modified_date1, 
                       'ID':ID1, 'ObjectID': ObjectID1,'SendID':SendID1,'SubscriberKey':SubscriberKey1,
                       'EventDate':EventDate1,'EventType':EventType1,'TriggeredSendDefinitionObjectID':TriggeredSendDefinitionObjectID1,
                       'BatchID':BatchID1,'SMTPCode':SMTPCode,'BounceCategory':BounceCategory,'SMTPReason':SMTPReason,'BounceType':BounceType})
        #print(df1['ID'].max())
        AggreateDF = AggreateDF.append(df1)   
        print(AggreateDF)          
        #print df1
        df_masked1 = df1[(df1.EventDate > "2016-02-20") & (df1.EventDate < "2016-07-25")]

显示尺寸

pandas 在 iPython/Jupyter 中打印到控制台时,它使用 ... 显示输出中显示的数据行之间有数据。当数据太大而无法打印每个值时,这很有用。这是默认行为,除非您覆盖显示选项。

来自Frequently Used Options

 df = pd.DataFrame(np.random.randn(7,2))
 pd.set_option('max_rows', 7)
 df

          0         1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771

pd.set_option('max_rows', 5)
df

           0         1
0   0.469112 -0.282863
1  -1.509059 -1.135632
..       ...       ...
5  -0.494929  1.071804
6   0.721555 -0.706771

[7 rows x 2 columns]