Python - 按组计算连续频率

Python - Count consecutive frequencies by group

我有一系列按时间戳和 user_id 排序的电子邮件。

我想调查电子邮件 j 关注电子邮件 i 的频率。我将在热图中显示用户之间的这些频率,以显示最常见的路径。

a = """timestamp,email,subject
2016-07-01 10:17:00,a@gmail.com,subject2
2016-07-01 02:01:02,a@gmail.com,welcome
2016-07-01 14:45:04,a@gmail.com,subject3
2016-07-01 08:14:02,a@gmail.com,subject1
2016-07-01 16:26:35,a@gmail.com,subject4
2016-07-01 10:17:00,b@gmail.com,subject1
2016-07-01 02:01:02,b@gmail.com,welcome
2016-07-01 14:45:04,b@gmail.com,subject3
2016-07-01 08:14:02,b@gmail.com,subject2
2016-07-01 16:26:35,b@gmail.com,subject4
2016-07-01 18:00:00,c@gmail.com,welcome
2016-07-01 19:00:02,c@gmail.com,subject1
2016-07-01 20:00:04,c@gmail.com,subject3
2016-07-01 21:14:02,c@gmail.com,subject4
2016-07-01 21:26:35,c@gmail.com,subject2
"""

import pandas as pd
from pandas.io.parsers import StringIO
df1 = pd.read_csv(StringIO(a), parse_dates=['timestamp'])
df1=df1.sort_values(['email','timestamp'])

已排序 df1:

        timestamp        email   subject
 1  2016-07-01 02:01:02  a@gmail.com   welcome
 3  2016-07-01 08:14:02  a@gmail.com  subject1
 0  2016-07-01 10:17:00  a@gmail.com  subject2
 2  2016-07-01 14:45:04  a@gmail.com  subject3
 4  2016-07-01 16:26:35  a@gmail.com  subject4
 6  2016-07-01 02:01:02  b@gmail.com   welcome
 8  2016-07-01 08:14:02  b@gmail.com  subject2
 5  2016-07-01 10:17:00  b@gmail.com  subject1
 7  2016-07-01 14:45:04  b@gmail.com  subject3
 9  2016-07-01 16:26:35  b@gmail.com  subject4
 10 2016-07-01 18:00:00  c@gmail.com   welcome
 11 2016-07-01 19:00:02  c@gmail.com  subject1
 12 2016-07-01 20:00:04  c@gmail.com  subject3
 13 2016-07-01 21:14:02  c@gmail.com  subject4
 14 2016-07-01 21:26:35  c@gmail.com  subject2

输出应如下所示

          welcome   subject1    subject2    subject3    subject4
welcome      0              
subject1     2         0                    
subject2     1         1          0     
subject3     0         2          1           0 
subject4     0         0          0           3             0

换句话说,有 2 次 subject1 在欢迎邮件之后。有 1 次主题 2 在欢迎信息等之后跟进。

最好的方法是什么?

两行(你可以压缩成一行):

df1['next_subject'] = df1.groupby('email')['subject'].shift(-1)
res = pd.crosstab(df1['next_subject'], df1['subject'])
print(res)

# subject       subject1  subject2  subject3  subject4  welcome
# next_subject                                                 
# subject1             0         1         0         0        2
# subject2             1         0         0         1        1
# subject3             2         1         0         0        0
# subject4             0         0         3         0        0

您可以稍微调整一下,使其完全符合您在 OP 中引用的形式:

subjects = ['welcome'] + ['subject{}'.format(i) for i in range(1, 5)]
res = res.loc[subjects, subjects].fillna(0).astype(int)
print(res)

# subject       welcome  subject1  subject2  subject3  subject4
# next_subject                                                 
# welcome             0         0         0         0         0
# subject1            2         0         1         0         0
# subject2            1         1         0         0         1
# subject3            0         2         1         0         0
# subject4            0         0         0         3         0