使用类型丰富的 Scala 测试

Scala testing with type enrichment

我已经迷上了类型丰富,例如

object MyImplicits{
  implicit class RichInt(i: Int){
    def complexCalculation: Int = i * 200 
  }
}

我在这样的代码中使用的

object Algorithm{
  def apply(rand: Random) = {
    import MyImplicits._
    rand.nextInt.complexCalculation + 1
  }
}

但是我现在如何隔离和单元测试算法?特别是,我想模拟 complexCalculation 的实现,像这样:

class MyAlgorithmTest extends FreeSpec with MockitoSugar{
  import org.mockito.Mockito.when

  "MyApgorithm" {
    "Delegates complex calculation" in {
      val mockRandom = mock[Random]
      when(mockRandom.nextInt()).thenReturn(1)

      // This wouldn't work, but is the kind of thing I'm looking for
      //when(1.complexCalculation).thenReturn(2)
      val expected = 1 * 2 + 1

      val result = MyAlgorithm(mockRandom)
      assert(result === expected)
    }
  }
}

以下使用最大规模的api。模拟测试 运行 很好,隐式 class 转换正常。

// Implicit.scala in src/main/scala

package implicittesting
import scala.util.Random

object MyImplicits{
  implicit class RichInt(i: Int){
    def complexCalculation: Int = 200*i  // make this complex :)
  }
}

object Algorithm{
  var current = 1
  def apply(rand: Random) = {
    import MyImplicits._
    current = rand.nextInt 
    current.complexCalculation + 100
  }
}


// ImplicitSuite.scala in src/main/test

package implicittesting

import org.scalatest.FunSuite


import org.junit.runner.RunWith
import org.scalatest.junit.JUnitRunner

@RunWith(classOf[JUnitRunner])
class DeleteSuite extends FunSuite {
  import MyImplicits._
  test("algorithm implicit class conversion test") {
    assert(Algorithm(scala.util.Random) == Algorithm.current.complexCalculation + 200)
    println(Algorithm.current)
  }
}

这是我想到的最好的。我愿意承认这看起来很疯狂。

import org.scalatest.FreeSpec
import org.scalatest.mockito.MockitoSugar
import scala.util.Random

trait MyImplicits {
  implicit class RichInt(i: Int){
    def complexCalculation: Int = complexCalculationImpl(i)
  }

  def complexCalculationImpl(i: Int) = i * 200
}

trait MyAlgorithm extends MyImplicits {
  def apply(rand: Random) = {
    rand.nextInt.complexCalculation + 1
  }
}

//Implementation for use
object MyAlgorithm extends MyAlgorithm

class MyAlgorithmTest extends FreeSpec with MockitoSugar{
  import org.mockito.Mockito.when

  "MyApgorithm should" - {
    "Delegate the complex calculation" in {
      val mockRandom = mock[Random]
      when(mockRandom.nextInt()).thenReturn(1)

      val instance = new MyAlgorithm {
        override def complexCalculationImpl(i: Int) = i * 2
      }

      val expected = 3 // Note we don't expect 201

      assert(instance(mockRandom) === expected)
    }
  }
}

RichInt.scala

trait RichInt {
  def complexCalculation: Int
}

class RichIntImpl(i: Int) extends RichInt {
  def complexCalculation = i * 200
}

Algorithm.scala

import scala.util.Random

class Algorithm(enrich: Int => RichInt) {
  implicit val _enrich = enrich
  def apply(rand: Random) = {
    rand.nextInt.complexCalculation + 1
  }
}

object Algorithm extends Algorithm(new RichIntImpl(_))

AlgorithmTest.scala

import org.scalatest.FreeSpec
import scala.util.Random
import org.mockito.Mockito._

class AlgorithmTest extends FreeSpec with MockSugar {

  "MyApgorithm should" - {
    "Delegate the complex calculation" in {
      val mockRandom = mock[Random]
      when(mockRandom.nextInt()) thenReturn 1

      val algorithm = new Algorithm(
        enrich = mocking[Int => RichInt] { enrich =>
          when(enrich(1)).thenReturnMocking { richInt =>
            when(richInt.complexCalculation).thenReturn(2)
          }
        }
      )

      val expected = 3

      assert(algorithm(mockRandom) === expected)
    }
  }
}

MockSuger.scala

import org.scalatest.mockito.MockitoSugar
import org.mockito.stubbing.OngoingStubbing

// More sugars to make our tests look better.
trait MockSugar extends MockitoSugar {

  def mocking[T <: AnyRef : Manifest](behavior: T => Unit): T = {
    val m = mock[T]
    behavior(m)
    m
  }

  implicit class RichOngoingStubbing[T <: AnyRef : Manifest](stub: OngoingStubbing[T]) {
    def thenReturnMocking(behavior: T => Unit) = {
      val m = mock[T]
      val s = stub.thenReturn(m)
      behavior(m)
      s
    }
  }
}

隐式启用组合,当您有组合时,您通常不需要模拟,因为您可以用实现代替测试。话虽这么说,在这种情况下我不是隐含的忠实拥护者,只是看不到它们带来的价值。我会用老派的作文来解决它(正如我在其他评论中暗示的那样):

trait Calculation {
  def calculation(i: Int): Int
}

trait ComplexCalculation extends Calculation {
  def calculation(i: Int): Int = i * 200
}

trait MyAlgorithm {
  self: Calculation =>

  def apply(rand: Random) = {
    calculation(rand.nextInt) + 1
  }
}

// somewehre in test package

trait MockCalculation extends Calculation {
  def calculation(i: Int): Int = i * 200
}

//test instance
object MyAlgorithm extends MyAlgorithm with MockCalculation

如果你坚持使用implicits来做组合,你可以这样做:

trait Computation {
  def compute(i: Int): Int
}

object prod {
  implicit val comp = new Computation {
    def compute(i: Int): Int = i * 200
  }
}

object test {
  implicit val comp = new Computation {
    def compute(i: Int): Int = i + 2
  }
}

object Algorithm {
  def apply(rand: Random)(implicit comp: Computation) = {
    comp.compute(i) + 1
  }
}

// application site
import prod._

Algorithm(scala.util.Random) // will run * 200 computation

//test

import test._

Algorithm(scala.util.Random) // will run + 2 computation

虽然这不会为您提供用于计算的点语法。我的直觉也反对这种方法,因为这是一种非常微妙的定义行为的方式,很容易在导入时出错。