pandas中的"flag"有什么用

What's the use of "flag" in pandas

当我在训练预测建模练习时,我无法理解标志的使用。我用谷歌搜索,但找不到最好的解释。

train = pd.read_csv('C:/Users/Analytics Vidhya/Desktop/challenge/Train.csv')
test = pd.read_csv('C:/Users/Analytics Vidhya/Desktop/challenge/Test.csv')
train['Type'] = 'Train' #Create a flag for Train and Test Data set
test['Type'] = 'Test'
fullData = pd.concat([train,test], axis=0) #Combined both Train and Test Data set

您能解释一下 Python pandas 中标志的含义以及标志的重要性吗?谢谢。

我想举个例子更容易也更快捷:

In [102]: train = pd.DataFrame(np.random.randint(0, 5, (5, 3)), columns=list('abc'))

In [103]: test = pd.DataFrame(np.random.randint(0, 5, (3, 3)), columns=list('abc'))

In [104]: train
Out[104]:
   a  b  c
0  3  4  0
1  0  0  1
2  2  4  1
3  4  2  0
4  2  4  0

In [105]: test
Out[105]:
   a  b  c
0  1  0  3
1  3  3  0
2  4  4  3

让我们向每个 DF 添加 Type 列:

In [106]: train['Type'] = 'Train'

In [107]: test['Type'] = 'Test'

现在让我们加入/合并(垂直)两个 DF - Type 列将有助于区分来自两个不同 DF 的数据:

In [108]: fullData = pd.concat([train,test], axis=0)

In [109]: fullData
Out[109]:
   a  b  c   Type
0  3  4  0  Train
1  0  0  1  Train
2  2  4  1  Train
3  4  2  0  Train
4  2  4  0  Train
0  1  0  3   Test
1  3  3  0   Test
2  4  4  3   Test