pandas:如何获取每一行的百分比

pandas: how to get the percentage for each row

当我使用 pandas value_count 方法时,我得到以下数据:

new_df['mark'].value_counts()

1   1349110
2   1606640
3   175629
4   790062
5   330978

如何获得每一行的百分比?

1   1349110 31.7%
2   1606640 37.8%
3   175629  4.1%
4   790062  18.6%
5   330978  7.8%

我需要将每一行除以这些数据的总和。

我认为你需要:

#if output is Series, convert it to DataFrame
df = df.rename('a').to_frame()

df['per'] = (df.a * 100 / df.a.sum()).round(1).astype(str) + '%'

print (df)
         a    per
1  1349110  31.7%
2  1606640  37.8%
3   175629   4.1%
4   790062  18.6%
5   330978   7.8%

时间:

使用 sum 两次似乎更快 value_counts:

In [184]: %timeit (jez(s))
10 loops, best of 3: 38.9 ms per loop

In [185]: %timeit (pir(s))
10 loops, best of 3: 76 ms per loop

时间代码:

np.random.seed([3,1415])
s = pd.Series(np.random.choice(list('ABCDEFGHIJ'), 1000, p=np.arange(1, 11) / 55.))
s = pd.concat([s]*1000)#.reset_index(drop=True)

def jez(s):
    df = s.value_counts()
    df = df.rename('a').to_frame()
    df['per'] = (df.a * 100 / df.a.sum()).round(1).astype(str) + '%'
    return df

def pir(s):
    return pd.DataFrame({'a':s.value_counts(), 
                         'per':s.value_counts(normalize=True).mul(100).round(1).astype(str) + '%'})

print (jez(s))
print (pir(s))
np.random.seed([3,1415])
s = pd.Series(np.random.choice(list('ABCDEFGHIJ'), 1000, p=np.arange(1, 11) / 55.))

s.value_counts()

I    176
J    167
H    136
F    128
G    111
E     85
D     83
C     52
B     38
A     24
dtype: int64

百分比

s.value_counts(normalize=True)

I    0.176
J    0.167
H    0.136
F    0.128
G    0.111
E    0.085
D    0.083
C    0.052
B    0.038
A    0.024
dtype: float64

counts = s.value_counts()
percent = counts / counts.sum()
fmt = '{:.1%}'.format
pd.DataFrame({'counts': counts, 'per': percent.map(fmt)})

   counts    per
I     176  17.6%
J     167  16.7%
H     136  13.6%
F     128  12.8%
G     111  11.1%
E      85   8.5%
D      83   8.3%
C      52   5.2%
B      38   3.8%
A      24   2.4%

这是一个比我认为上面提出的更 pythonic 的片段

def aspercent(column,decimals=2):
    assert decimals >= 0
    return (round(column*100,decimals).astype(str) + "%")

aspercent(df['mark'].value_counts(normalize=True),decimals=1)

这将输出:

1   1349110 31.7%
2   1606640 37.8%
3   175629  4.1%
4   790062  18.6%
5   330978  7.8%

这也允许调整小数位数