根据另一个特定列显示特定列的缺失值
Display missing values of specific column based on another specific column
这是我的问题
假设我在数据框中有 2 列,如下所示:
Type | Killed
_______ |________
Dog 1
Dog nan
Dog nan
Cat 4
Cat nan
Cow 1
Cow nan
我想根据 Type 显示 Killed 中的所有缺失值并计算它们
我想要的结果是这样的:
Type | Sum(isnull)
Dog 2
Cat 1
Cow 1
有没有办法显示这个?
您可以使用 boolean indexing
with value_counts
:
print (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))
index Sum(isnull)
0 Dog 2
1 Cow 1
2 Cat 1
或者聚合size
,好像更快:
print (df[df.Killed.isnull()]
.groupby('Type')['Killed']
.size()
.reset_index(name='Sum(isnull)'))
Type Sum(isnull)
0 Cat 1
1 Cow 1
2 Dog 2
时间:
df = pd.concat([df]*1000).reset_index(drop=True)
In [30]: %timeit (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 5.36 ms per loop
In [31]: %timeit (df[df.Killed.isnull()].groupby('Type')['Killed'].size().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 2.02 ms per loop
我可以给你们isnull
和notnull
isnull = np.where(df.Killed.isnull(), 'isnull', 'notnull')
df.groupby([df.Type, isnull]).size().unstack()
这是我的问题
假设我在数据框中有 2 列,如下所示:
Type | Killed
_______ |________
Dog 1
Dog nan
Dog nan
Cat 4
Cat nan
Cow 1
Cow nan
我想根据 Type 显示 Killed 中的所有缺失值并计算它们
我想要的结果是这样的:
Type | Sum(isnull)
Dog 2
Cat 1
Cow 1
有没有办法显示这个?
您可以使用 boolean indexing
with value_counts
:
print (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))
index Sum(isnull)
0 Dog 2
1 Cow 1
2 Cat 1
或者聚合size
,好像更快:
print (df[df.Killed.isnull()]
.groupby('Type')['Killed']
.size()
.reset_index(name='Sum(isnull)'))
Type Sum(isnull)
0 Cat 1
1 Cow 1
2 Dog 2
时间:
df = pd.concat([df]*1000).reset_index(drop=True)
In [30]: %timeit (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 5.36 ms per loop
In [31]: %timeit (df[df.Killed.isnull()].groupby('Type')['Killed'].size().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 2.02 ms per loop
我可以给你们isnull
和notnull
isnull = np.where(df.Killed.isnull(), 'isnull', 'notnull')
df.groupby([df.Type, isnull]).size().unstack()