根据另一个特定列显示特定列的缺失值

Display missing values of specific column based on another specific column

这是我的问题

假设我在数据框中有 2 列,如下所示:

 Type   | Killed
_______ |________
 Dog        1
 Dog       nan
 Dog       nan
 Cat        4
 Cat       nan
 Cow        1
 Cow       nan

我想根据 Type 显示 Killed 中的所有缺失值并计算它们

我想要的结果是这样的:

Type | Sum(isnull)
Dog       2
Cat       1
Cow       1

有没有办法显示这个?

您可以使用 boolean indexing with value_counts:

print (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))

  index  Sum(isnull)
0   Dog            2
1   Cow            1
2   Cat            1

或者聚合size,好像更快:

print (df[df.Killed.isnull()]
            .groupby('Type')['Killed']
            .size()
            .reset_index(name='Sum(isnull)'))

  Type  Sum(isnull)
0  Cat           1
1  Cow           1
2  Dog           2

时间:

df = pd.concat([df]*1000).reset_index(drop=True)

In [30]: %timeit (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 5.36 ms per loop

In [31]: %timeit (df[df.Killed.isnull()].groupby('Type')['Killed'].size().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 2.02 ms per loop

我可以给你们isnullnotnull

isnull = np.where(df.Killed.isnull(), 'isnull', 'notnull')
df.groupby([df.Type, isnull]).size().unstack()