Numpy Savetxt 覆盖,无法确定放置循环的位置
Numpy Savetxt Overwriting, Cannot Figure Out Where to Place Loop
我正在创建一个程序来计算客户数据之间的相关性。我想将相关值打印到 CSV 文件中,以便进一步分析数据。
我已经成功地让我的程序循环遍历所有客户(每个客户 12 个月的数据),同时计算他们与多个安排的个人相关性。如果我打印到对话框,我可以看到这个。
但是,当我尝试使用 Savetxt 保存时,我只得到了我计算的最终值。
我想我把 for 循环放在了错误的地方,它应该放在哪里?我试过检查其他问题,但并没有说明太多问题。
编辑:我尝试按照建议将写作与外部 for 循环和内部 for 循环对齐,两者都产生了相同的结果。
for x_customer in range(0,len(overalldata),12):
for x in range(0,13,1):
cust_months = overalldata[0:x,1]
cust_balancenormal = overalldata[0:x,16]
cust_demo_one = overalldata[0:x,2]
cust_demo_two = overalldata[0:x,3]
num_acct_A = overalldata[0:x,4]
num_acct_B = overalldata[0:x,5]
#Correlation Calculations
demo_one_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_one)[1,0]
demo_two_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_two)[1,0]
demo_one_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_one)[1,0]
demo_one_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_one)[1,0]
demo_two_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_two)[1,0]
demo_two_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_two)[1,0]
result_correlation = [(demo_one_corr_balance),(demo_two_corr_balance),(demo_one_corr_acct_a),(demo_one_corr_acct_b),(demo_two_corr_acct_a),(demo_two_corr_acct_b)]
result_correlation_combined = emptylist.append([result_correlation])
cust_delete_list = [0,(x_customer),1]
overalldata = numpy.delete(overalldata, (cust_delete_list), axis=0)
numpy.savetxt('correlationoutput.csv', numpy.column_stack(result_correlation), delimiter=',')
print result_correlation
这部分代码很草率:
result_correlation = [(demo_one_corr_balance),...]
result_correlation_combined = emptylist.append([result_correlation])
cust_delete_list = [0,(x_customer),1]
overalldata = numpy.delete(overalldata, (cust_delete_list), axis=0)
numpy.savetxt('correlationoutput.csv', numpy.column_stack(result_correlation), delimiter=',')
print result_correlation
你在最里面的循环中设置了result_correlation
,然后你在最后的保存打印中使用它。显然它会打印最后一个循环的结果。
同时将其附加到 result_correlation_combined
,在 x
循环之外,靠近 x_customer
循环。但是您不对该列表执行任何操作。
最后在 x_customer
循环中,您使用 overalldata
,但我看不到任何进一步的用途。
暂时忘记 savetxt
,直接收集数据。
我采纳了上述 poster 的建议并更正了我的代码。我现在可以写入文件了。但是,我在完成迭代次数方面遇到了问题,我将 post 在另一个问题中解决,因为它是不相关的。这是我使用的解决方案。
for x_customer in range(0,len(overalldata),12):
for x in range(0,13,1):
cust_months = overalldata[0:x,1]
cust_balancenormal = overalldata[0:x,16]
cust_demo_one = overalldata[0:x,2]
cust_demo_two = overalldata[0:x,3]
num_acct_A = overalldata[0:x,4]
num_acct_B = overalldata[0:x,5]
out_mark_channel_one = overalldata[0:x,25]
out_service_channel_two = overalldata[0:x,26]
out_mark_channel_three = overalldata[0:x,27]
out_mark_channel_four = overalldata[0:x,28]
#Correlation Calculations
#Demographic to Balance Correlations
demo_one_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_one)[1,0]
demo_two_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_two)[1,0]
#Demographic to Account Number Correlations
demo_one_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_one)[1,0]
demo_one_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_one)[1,0]
demo_two_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_two)[1,0]
demo_two_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_two)[1,0]
#Marketing Response Channel One
mark_one_corr_acct_a = numpy.corrcoef(num_acct_A, out_mark_channel_one)[1, 0]
mark_one_corr_acct_b = numpy.corrcoef(num_acct_B, out_mark_channel_one)[1, 0]
mark_one_corr_balance = numpy.corrcoef(cust_balancenormal, out_mark_channel_one)[1, 0]
#Marketing Response Channel Two
mark_two_corr_acct_a = numpy.corrcoef(num_acct_A, out_service_channel_two)[1, 0]
mark_two_corr_acct_b = numpy.corrcoef(num_acct_B, out_service_channel_two)[1, 0]
mark_two_corr_balance = numpy.corrcoef(cust_balancenormal, out_service_channel_two)[1, 0]
#Marketing Response Channel Three
mark_three_corr_acct_a = numpy.corrcoef(num_acct_A, out_mark_channel_three)[1, 0]
mark_three_corr_acct_b = numpy.corrcoef(num_acct_B, out_mark_channel_three)[1, 0]
mark_three_corr_balance = numpy.corrcoef(cust_balancenormal, out_mark_channel_three)[1, 0]
#Marketing Response Channel Four
mark_four_corr_acct_a = numpy.corrcoef(num_acct_A, out_mark_channel_four)[1, 0]
mark_four_corr_acct_b = numpy.corrcoef(num_acct_B, out_mark_channel_four)[1, 0]
mark_four_corr_balance = numpy.corrcoef(cust_balancenormal, out_mark_channel_four)[1, 0]
#Result Correlations For Exporting to CSV of all Correlations
result_correlation = [(demo_one_corr_balance),(demo_two_corr_balance),(demo_one_corr_acct_a),(demo_one_corr_acct_b),(demo_two_corr_acct_a),(demo_two_corr_acct_b),(mark_one_corr_acct_a),(mark_one_corr_acct_b),(mark_one_corr_balance),
(mark_two_corr_acct_a),(mark_two_corr_acct_b),(mark_two_corr_balance),(mark_three_corr_acct_a),(mark_three_corr_acct_b),(mark_three_corr_balance),(mark_four_corr_acct_a),(mark_four_corr_acct_b),
(mark_four_corr_balance)]
result_correlation_nan_nuetralized = numpy.nan_to_num(result_correlation)
c.writerow(result_correlation)
result_correlation_combined = emptylist.append([result_correlation])
cust_delete_list = [0,x_customer,1]
overalldata = numpy.delete(overalldata, (cust_delete_list), axis=0)
我正在创建一个程序来计算客户数据之间的相关性。我想将相关值打印到 CSV 文件中,以便进一步分析数据。
我已经成功地让我的程序循环遍历所有客户(每个客户 12 个月的数据),同时计算他们与多个安排的个人相关性。如果我打印到对话框,我可以看到这个。
但是,当我尝试使用 Savetxt 保存时,我只得到了我计算的最终值。
我想我把 for 循环放在了错误的地方,它应该放在哪里?我试过检查其他问题,但并没有说明太多问题。
编辑:我尝试按照建议将写作与外部 for 循环和内部 for 循环对齐,两者都产生了相同的结果。
for x_customer in range(0,len(overalldata),12):
for x in range(0,13,1):
cust_months = overalldata[0:x,1]
cust_balancenormal = overalldata[0:x,16]
cust_demo_one = overalldata[0:x,2]
cust_demo_two = overalldata[0:x,3]
num_acct_A = overalldata[0:x,4]
num_acct_B = overalldata[0:x,5]
#Correlation Calculations
demo_one_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_one)[1,0]
demo_two_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_two)[1,0]
demo_one_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_one)[1,0]
demo_one_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_one)[1,0]
demo_two_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_two)[1,0]
demo_two_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_two)[1,0]
result_correlation = [(demo_one_corr_balance),(demo_two_corr_balance),(demo_one_corr_acct_a),(demo_one_corr_acct_b),(demo_two_corr_acct_a),(demo_two_corr_acct_b)]
result_correlation_combined = emptylist.append([result_correlation])
cust_delete_list = [0,(x_customer),1]
overalldata = numpy.delete(overalldata, (cust_delete_list), axis=0)
numpy.savetxt('correlationoutput.csv', numpy.column_stack(result_correlation), delimiter=',')
print result_correlation
这部分代码很草率:
result_correlation = [(demo_one_corr_balance),...]
result_correlation_combined = emptylist.append([result_correlation])
cust_delete_list = [0,(x_customer),1]
overalldata = numpy.delete(overalldata, (cust_delete_list), axis=0)
numpy.savetxt('correlationoutput.csv', numpy.column_stack(result_correlation), delimiter=',')
print result_correlation
你在最里面的循环中设置了result_correlation
,然后你在最后的保存打印中使用它。显然它会打印最后一个循环的结果。
同时将其附加到 result_correlation_combined
,在 x
循环之外,靠近 x_customer
循环。但是您不对该列表执行任何操作。
最后在 x_customer
循环中,您使用 overalldata
,但我看不到任何进一步的用途。
暂时忘记 savetxt
,直接收集数据。
我采纳了上述 poster 的建议并更正了我的代码。我现在可以写入文件了。但是,我在完成迭代次数方面遇到了问题,我将 post 在另一个问题中解决,因为它是不相关的。这是我使用的解决方案。
for x_customer in range(0,len(overalldata),12):
for x in range(0,13,1):
cust_months = overalldata[0:x,1]
cust_balancenormal = overalldata[0:x,16]
cust_demo_one = overalldata[0:x,2]
cust_demo_two = overalldata[0:x,3]
num_acct_A = overalldata[0:x,4]
num_acct_B = overalldata[0:x,5]
out_mark_channel_one = overalldata[0:x,25]
out_service_channel_two = overalldata[0:x,26]
out_mark_channel_three = overalldata[0:x,27]
out_mark_channel_four = overalldata[0:x,28]
#Correlation Calculations
#Demographic to Balance Correlations
demo_one_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_one)[1,0]
demo_two_corr_balance = numpy.corrcoef(cust_balancenormal, cust_demo_two)[1,0]
#Demographic to Account Number Correlations
demo_one_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_one)[1,0]
demo_one_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_one)[1,0]
demo_two_corr_acct_a = numpy.corrcoef(num_acct_A, cust_demo_two)[1,0]
demo_two_corr_acct_b = numpy.corrcoef(num_acct_B, cust_demo_two)[1,0]
#Marketing Response Channel One
mark_one_corr_acct_a = numpy.corrcoef(num_acct_A, out_mark_channel_one)[1, 0]
mark_one_corr_acct_b = numpy.corrcoef(num_acct_B, out_mark_channel_one)[1, 0]
mark_one_corr_balance = numpy.corrcoef(cust_balancenormal, out_mark_channel_one)[1, 0]
#Marketing Response Channel Two
mark_two_corr_acct_a = numpy.corrcoef(num_acct_A, out_service_channel_two)[1, 0]
mark_two_corr_acct_b = numpy.corrcoef(num_acct_B, out_service_channel_two)[1, 0]
mark_two_corr_balance = numpy.corrcoef(cust_balancenormal, out_service_channel_two)[1, 0]
#Marketing Response Channel Three
mark_three_corr_acct_a = numpy.corrcoef(num_acct_A, out_mark_channel_three)[1, 0]
mark_three_corr_acct_b = numpy.corrcoef(num_acct_B, out_mark_channel_three)[1, 0]
mark_three_corr_balance = numpy.corrcoef(cust_balancenormal, out_mark_channel_three)[1, 0]
#Marketing Response Channel Four
mark_four_corr_acct_a = numpy.corrcoef(num_acct_A, out_mark_channel_four)[1, 0]
mark_four_corr_acct_b = numpy.corrcoef(num_acct_B, out_mark_channel_four)[1, 0]
mark_four_corr_balance = numpy.corrcoef(cust_balancenormal, out_mark_channel_four)[1, 0]
#Result Correlations For Exporting to CSV of all Correlations
result_correlation = [(demo_one_corr_balance),(demo_two_corr_balance),(demo_one_corr_acct_a),(demo_one_corr_acct_b),(demo_two_corr_acct_a),(demo_two_corr_acct_b),(mark_one_corr_acct_a),(mark_one_corr_acct_b),(mark_one_corr_balance),
(mark_two_corr_acct_a),(mark_two_corr_acct_b),(mark_two_corr_balance),(mark_three_corr_acct_a),(mark_three_corr_acct_b),(mark_three_corr_balance),(mark_four_corr_acct_a),(mark_four_corr_acct_b),
(mark_four_corr_balance)]
result_correlation_nan_nuetralized = numpy.nan_to_num(result_correlation)
c.writerow(result_correlation)
result_correlation_combined = emptylist.append([result_correlation])
cust_delete_list = [0,x_customer,1]
overalldata = numpy.delete(overalldata, (cust_delete_list), axis=0)