使用 isin 从列表中获取数据框列
Get dataframe columns from a list using isin
我有一个数据框 df1
,我有一个包含 df1
.
几列名称的列表
df1:
User_id month day Age year CVI ZIP sex wgt
0 1 7 16 1977 2 NA M NaN
1 2 7 16 1977 3 NA M NaN
2 3 7 16 1977 2 DM F NaN
3 4 7 16 1977 7 DM M NaN
4 5 7 16 1977 3 DM M NaN
... ... ... ... ... ... ... ... ...
35544 35545 12 31 2002 15 AH NaN NaN
35545 35546 12 31 2002 15 AH NaN NaN
35546 35547 12 31 2002 10 RM F 14
35547 35548 12 31 2002 7 DO M 51
35548 35549 12 31 2002 5 NaN NaN NaN
list= [u"User_id", u"day", u"ZIP", u"sex"]
我想创建一个新的数据框 df2
,它只包含列表中的那些列,以及一个数据框 df3
,它包含不在列表中的列。
Here 我发现我需要做:
df2=df1[df1[df1.columns[1]].isin(list)]
但结果我得到:
Empty DataFrame
Columns: []
Index: []
[0 rows x 9 columns]
我做错了什么,我怎样才能得到需要的结果?如果它应该是 4,为什么是“9 列”?
你可以试试:
df2 = df1[list] # it does a projection on the columns contained in the list
df3 = df1[[col for col in df1.columns if col not in list]]
Index.difference
的解决方案:
L = [u"User_id", u"day", u"ZIP", u"sex"]
df2 = df1[L]
df3 = df1[df1.columns.difference(df2.columns)]
print (df2)
User_id day ZIP sex
0 0 7 NaN M
1 1 7 NaN M
2 2 7 DM F
3 3 7 DM M
4 4 7 DM M
print (df3)
Age CVI month wgt year
0 16 2 1 NaN 1977
1 16 3 2 NaN 1977
2 16 2 3 NaN 1977
3 16 7 4 NaN 1977
4 16 3 5 NaN 1977
或者:
df2 = df1[L]
df3 = df1[df1.columns.difference(pd.Index(L))]
print (df2)
User_id day ZIP sex
0 0 7 NaN M
1 1 7 NaN M
2 2 7 DM F
3 3 7 DM M
4 4 7 DM M
print (df3)
Age CVI month wgt year
0 16 2 1 NaN 1977
1 16 3 2 NaN 1977
2 16 2 3 NaN 1977
3 16 7 4 NaN 1977
4 16 3 5 NaN 1977
永远不要将列表命名为 "list"
my_list= [u"User_id", u"day", u"ZIP", u"sex"]
df2 = df1[df1.keys()[df1.keys().isin(my_list)]]
永远不要将列表命名为 "list"
my_list= [u"User_id", u"day", u"ZIP", u"sex"]
df2 = df1[df1.keys()[df1.keys().isin(my_list)]]
或
df2 = df1[df1.columns[df1.columns.isin(my_list)]]
我有一个数据框 df1
,我有一个包含 df1
.
df1:
User_id month day Age year CVI ZIP sex wgt
0 1 7 16 1977 2 NA M NaN
1 2 7 16 1977 3 NA M NaN
2 3 7 16 1977 2 DM F NaN
3 4 7 16 1977 7 DM M NaN
4 5 7 16 1977 3 DM M NaN
... ... ... ... ... ... ... ... ...
35544 35545 12 31 2002 15 AH NaN NaN
35545 35546 12 31 2002 15 AH NaN NaN
35546 35547 12 31 2002 10 RM F 14
35547 35548 12 31 2002 7 DO M 51
35548 35549 12 31 2002 5 NaN NaN NaN
list= [u"User_id", u"day", u"ZIP", u"sex"]
我想创建一个新的数据框 df2
,它只包含列表中的那些列,以及一个数据框 df3
,它包含不在列表中的列。
Here 我发现我需要做:
df2=df1[df1[df1.columns[1]].isin(list)]
但结果我得到:
Empty DataFrame
Columns: []
Index: []
[0 rows x 9 columns]
我做错了什么,我怎样才能得到需要的结果?如果它应该是 4,为什么是“9 列”?
你可以试试:
df2 = df1[list] # it does a projection on the columns contained in the list
df3 = df1[[col for col in df1.columns if col not in list]]
Index.difference
的解决方案:
L = [u"User_id", u"day", u"ZIP", u"sex"]
df2 = df1[L]
df3 = df1[df1.columns.difference(df2.columns)]
print (df2)
User_id day ZIP sex
0 0 7 NaN M
1 1 7 NaN M
2 2 7 DM F
3 3 7 DM M
4 4 7 DM M
print (df3)
Age CVI month wgt year
0 16 2 1 NaN 1977
1 16 3 2 NaN 1977
2 16 2 3 NaN 1977
3 16 7 4 NaN 1977
4 16 3 5 NaN 1977
或者:
df2 = df1[L]
df3 = df1[df1.columns.difference(pd.Index(L))]
print (df2)
User_id day ZIP sex
0 0 7 NaN M
1 1 7 NaN M
2 2 7 DM F
3 3 7 DM M
4 4 7 DM M
print (df3)
Age CVI month wgt year
0 16 2 1 NaN 1977
1 16 3 2 NaN 1977
2 16 2 3 NaN 1977
3 16 7 4 NaN 1977
4 16 3 5 NaN 1977
永远不要将列表命名为 "list"
my_list= [u"User_id", u"day", u"ZIP", u"sex"]
df2 = df1[df1.keys()[df1.keys().isin(my_list)]]
永远不要将列表命名为 "list"
my_list= [u"User_id", u"day", u"ZIP", u"sex"]
df2 = df1[df1.keys()[df1.keys().isin(my_list)]]
或
df2 = df1[df1.columns[df1.columns.isin(my_list)]]