将 pandas 中的数据帧与相同的行和列但不同的单元格值组合
Combining dataframes in pandas with the same rows and columns, but different cell values
我有兴趣合并 pandas 中的两个数据帧,它们具有相同的行索引和列名称,但单元格值不同。请参阅以下示例:
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'A':[22,2,np.NaN,np.NaN],
'B':[23,4,np.NaN,np.NaN],
'C':[24,6,np.NaN,np.NaN],
'D':[25,8,np.NaN,np.NaN]})
df2 = pd.DataFrame({'A':[np.NaN,np.NaN,56,100],
'B':[np.NaN,np.NaN,58,101],
'C':[np.NaN,np.NaN,59,102],
'D':[np.NaN,np.NaN,60,103]})
In[6]: print(df1)
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
In[7]: print(df2)
A B C D
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
我希望生成的帧看起来像这样:
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
我尝试了 pd.concat 和 pd.merge 的不同方法,但一些数据总是被 NaN 替换。任何正确方向的指示将不胜感激。
print (df1.combine_first(df2))
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
或fillna
:
print (df1.fillna(df2))
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
或update
:
df1.update(df2)
print (df1)
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
df1.combine_first(df2)
我有兴趣合并 pandas 中的两个数据帧,它们具有相同的行索引和列名称,但单元格值不同。请参阅以下示例:
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'A':[22,2,np.NaN,np.NaN],
'B':[23,4,np.NaN,np.NaN],
'C':[24,6,np.NaN,np.NaN],
'D':[25,8,np.NaN,np.NaN]})
df2 = pd.DataFrame({'A':[np.NaN,np.NaN,56,100],
'B':[np.NaN,np.NaN,58,101],
'C':[np.NaN,np.NaN,59,102],
'D':[np.NaN,np.NaN,60,103]})
In[6]: print(df1)
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
In[7]: print(df2)
A B C D
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
我希望生成的帧看起来像这样:
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
我尝试了 pd.concat 和 pd.merge 的不同方法,但一些数据总是被 NaN 替换。任何正确方向的指示将不胜感激。
print (df1.combine_first(df2))
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
或fillna
:
print (df1.fillna(df2))
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
或update
:
df1.update(df2)
print (df1)
A B C D
0 22.0 23.0 24.0 25.0
1 2.0 4.0 6.0 8.0
2 56.0 58.0 59.0 60.0
3 100.0 101.0 102.0 103.0
df1.combine_first(df2)