pandas 切片多索引数据帧
pandas slicing multiindex dataframe
我想切片一个多索引pandas数据帧
这里是获取我的测试数据的代码:
import pandas as pd
testdf = {
'Name': {
0: 'H', 1: 'H', 2: 'H', 3: 'H', 4: 'H'}, 'Division': {
0: 'C', 1: 'C', 2: 'C', 3: 'C', 4: 'C'}, 'EmployeeId': {
0: 14, 1: 14, 2: 14, 3: 14, 4: 14}, 'Amt1': {
0: 124.39, 1: 186.78, 2: 127.94, 3: 258.35000000000002, 4: 284.77999999999997}, 'Amt2': {
0: 30.0, 1: 30.0, 2: 30.0, 3: 30.0, 4: 60.0}, 'Employer': {
0: 'Z', 1: 'Z', 2: 'Z', 3: 'Z', 4: 'Z'}, 'PersonId': {
0: 14, 1: 14, 2: 14, 3: 14, 4: 15}, 'Provider': {
0: 'A', 1: 'A', 2: 'A', 3: 'A', 4: 'B'}, 'Year': {
0: 2012, 1: 2012, 2: 2013, 3: 2013, 4: 2012}}
testdf = pd.DataFrame(testdf)
testdf
grouper_keys = [
'Employer',
'Year',
'Division',
'Name',
'EmployeeId',
'PersonId']
testdf2 = pd.pivot_table(data=testdf,
values='Amt1',
index=grouper_keys,
columns='Provider',
fill_value=None,
margins=False,
dropna=True,
aggfunc=('sum', 'count'),
)
print(testdf2)
给出:
现在 A
或 B
使用
只能得到 sum
testdf2.loc[:, slice(None, ('sum', 'A'))]
这给出
我怎样才能得到 both sum
and count
for only A
or B
您可以使用:
idx = pd.IndexSlice
df = testdf2.loc[:, idx[['sum', 'count'], 'A']]
print (df)
sum count
Provider A A
Employer Year Division Name EmployeeId PersonId
Z 2012 C H 14 14 311.17 2.0
15 NaN NaN
2013 C H 14 14 386.29 2.0
另一个解决方案:
df = testdf2.loc[:, (slice('sum','count'), ['A'])]
print (df)
sum count
Provider A A
Employer Year Division Name EmployeeId PersonId
Z 2012 C H 14 14 311.17 2.0
15 NaN NaN
2013 C H 14 14 386.29 2.0
横截面使用xs
testdf2.xs('A', axis=1, level=1)
或者保持列与drop_level=False
的水平
testdf2.xs('A', axis=1, level=1, drop_level=False)
我想切片一个多索引pandas数据帧
这里是获取我的测试数据的代码:
import pandas as pd
testdf = {
'Name': {
0: 'H', 1: 'H', 2: 'H', 3: 'H', 4: 'H'}, 'Division': {
0: 'C', 1: 'C', 2: 'C', 3: 'C', 4: 'C'}, 'EmployeeId': {
0: 14, 1: 14, 2: 14, 3: 14, 4: 14}, 'Amt1': {
0: 124.39, 1: 186.78, 2: 127.94, 3: 258.35000000000002, 4: 284.77999999999997}, 'Amt2': {
0: 30.0, 1: 30.0, 2: 30.0, 3: 30.0, 4: 60.0}, 'Employer': {
0: 'Z', 1: 'Z', 2: 'Z', 3: 'Z', 4: 'Z'}, 'PersonId': {
0: 14, 1: 14, 2: 14, 3: 14, 4: 15}, 'Provider': {
0: 'A', 1: 'A', 2: 'A', 3: 'A', 4: 'B'}, 'Year': {
0: 2012, 1: 2012, 2: 2013, 3: 2013, 4: 2012}}
testdf = pd.DataFrame(testdf)
testdf
grouper_keys = [
'Employer',
'Year',
'Division',
'Name',
'EmployeeId',
'PersonId']
testdf2 = pd.pivot_table(data=testdf,
values='Amt1',
index=grouper_keys,
columns='Provider',
fill_value=None,
margins=False,
dropna=True,
aggfunc=('sum', 'count'),
)
print(testdf2)
给出:
现在 A
或 B
使用
sum
testdf2.loc[:, slice(None, ('sum', 'A'))]
这给出
我怎样才能得到 both sum
and count
for only A
or B
您可以使用:
idx = pd.IndexSlice
df = testdf2.loc[:, idx[['sum', 'count'], 'A']]
print (df)
sum count
Provider A A
Employer Year Division Name EmployeeId PersonId
Z 2012 C H 14 14 311.17 2.0
15 NaN NaN
2013 C H 14 14 386.29 2.0
另一个解决方案:
df = testdf2.loc[:, (slice('sum','count'), ['A'])]
print (df)
sum count
Provider A A
Employer Year Division Name EmployeeId PersonId
Z 2012 C H 14 14 311.17 2.0
15 NaN NaN
2013 C H 14 14 386.29 2.0
横截面使用xs
testdf2.xs('A', axis=1, level=1)
或者保持列与drop_level=False
testdf2.xs('A', axis=1, level=1, drop_level=False)