使用嵌套字典创建多索引“Series”

Creating a multiindexed `Series` with a nested dictionary

在我看来,我要做的事情应该很简单,就像将它传递给构造函数一样简单,但实际上并非如此。我有一本像下面这样的字典。

d = {"russell": {"score": numpy.random.rand(), "ping": numpy.random.randint(10, 100)},
    "cantor": {"score": numpy.random.rand(), "ping": numpy.random.randint(10, 100)},
    "godel": {"score": numpy.random.rand(), "ping": numpy.random.randint(10, 100)}}

我想做类似 pandas.Series(d) 的事情并获得如下所示的 Series 实例。

russell  score  0.87391482
         ping   23
cantor   score  0.77821932
         ping   16
godel    score  0.53372128
         ping   35

但我实际得到的是下面。

cantor     {'ping': 44, 'score': 0.007408727109865398}
godel        {'ping': 41, 'score': 0.9338940910283948}
russell       {'ping': 74, 'score': 0.733817307366666}

有没有办法实现我想要实现的目标?

我觉得你需要DataFrame constructor with unstack:

import pandas as pd
import numpy as np

d = {"russell": {"score": np.random.rand(), "ping": np.random.randint(10, 100)},
    "cantor": {"score": np.random.rand(), "ping": np.random.randint(10, 100)},
    "godel": {"score": np.random.rand(), "ping": np.random.randint(10, 100)}}

print (pd.DataFrame(d).unstack())  

cantor   ping     33.000000
         score     0.240253
godel    ping     64.000000
         score     0.435040
russell  ping     41.000000
         score     0.171810
dtype: float64

此外,如果需要在 MultiIndex 中交换级别,请使用 stack:

print (pd.DataFrame(d).stack())    
ping   cantor     64.000000
       godel      40.000000
       russell    66.000000
score  cantor      0.265771
       godel       0.283725
       russell     0.085856
dtype: float64