从稀疏矩阵中提取项目
Extracting Items From Sparse Matrix
我正在处理一系列文本语料库,为此我需要构建一个共现矩阵。我目前正在测试编写和测试我的代码,所以每次我 运行 我都会得到一个不同的矩阵(因为 list(set())
是无序的。我已经使用 scipy.sparse.coo_matrix()
构建了一个稀疏矩阵并且想要能够使用由这种类型的构造生成的坐标和值。我想这将是最快和最有效的内存方式。在我尝试访问这些值的那一刻,我看到
[<1x16 sparse matrix of type '<class 'numpy.float32'>'
with 10 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
with 4 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
with 4 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
with 7 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
当我 print
稀疏矩阵时,我得到以下内容:
(0, 1) 0.5
(0, 4) 1.0
(0, 6) 0.5
(1, 7) 1.0
(1, 11) 1.0
(1, 12) 1.0
(1, 13) 0.5
(2, 14) 0.5
...
(15, 6) 1.0
(15, 9) 0.5
(15, 15) 3.0
(15, 0) 2.0
(15, 1) 0.5
(15, 6) 0.5
(15, 14) 1.5
我认为检索这些值是可能的。
对于上面的示例,我提取了以下实例:
row = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13,
13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15]
column = [1, 4, 6, 7, 11, 12, 13, 14, 15, 0, 4, 9, 12, 13, 14, 15, 4, 5, 12, 13,
4, 9, 13, 14, 0, 1, 2, 3, 5, 8, 10, 12, 13, 14, 2, 4, 12, 13, 0, 14,
15, 0, 8, 11, 13, 4, 7, 10, 11, 1, 3, 12, 14, 4, 8, 11, 13, 0, 7, 8,
10, 0, 1, 2, 4, 5, 9, 13, 0, 1, 2, 3, 4, 5, 7, 10, 12, 0, 1, 3, 4, 6,
9, 15, 0, 1, 6, 14]
values = [0.5, 1.0, 0.5, 1.0, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5,
1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 0.5, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0, 0.5,
0.5, 1.0, 0.5, 0.5, 1.0, 1.0, 1.5, 2.0, 1.0, 2.5, 1.0, 3.0, 1.0, 0.5,
1.5, 2.0, 1.0, 1.0, 2.0, 0.5, 1.0, 0.5, 2.0, 2.0, 0.5, 4.0, 0.5, 0.5,
0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5, 2.5, 1.0,
4.0, 1.0, 1.0, 1.5, 1.0, 1.0, 1.0, 0.5, 1.0, 0.5, 1.0, 1.0, 0.5, 3.0,
2.0, 0.5, 0.5, 1.5]
sps_array = sparse.coo_matrix((values, (row, column)), shape=(16, 16))
目前我可以使用 sps_array.toarray
转换 sps_array
,然后创建一个列表,其中
list1 = list(np.nonzero(sps_array > 0)[0])
list2 = list(np.nonzero(sps_array > 0)[1])
并创建以下 for
循环来重建坐标
index = 0
sps_coordinates = []
for i in range(token_size):
for j in range(list1_count[i]):
sps_coordinates.append((list1[index+j], list2[index+j]))
index += list1_count[i]
我通过
检索值
list(sps_array[sps_array > 0]
相对于我所做的,是否有更有效的方法来获取这些坐标和值?
我用复制粘贴构建你的 sps_array
:
In [2126]: sps_array
Out[2126]:
<16x16 sparse matrix of type '<class 'numpy.float64'>'
with 88 stored elements in COOrdinate format>
coo
格式将其值存储在 3 个属性中,每个属性都是一个数组(从 3 个输入列表派生):
In [2127]: sps_array.data
Out[2127]:
array([ 0.5, 1. , 0.5, 1. , 1. , 1. , 0.5, 0.5, 1. , 1. , 0.5,
0.5, 1. , 0.5, 1. , 0.5, 1. , 0.5, 1. , 0.5, 0.5, 1. ,
0.5, 1. , 1. , 1. , 1. , 0.5, 0.5, 1. , 0.5, 0.5, 1. ,
1. , 1.5, 2. , 1. , 2.5, 1. , 3. , 1. , 0.5, 1.5, 2. ,
1. , 1. , 2. , 0.5, 1. , 0.5, 2. , 2. , 0.5, 4. , 0.5,
0.5, 0.5, 1. , 1. , 0.5, 0.5, 1. , 0.5, 1. , 1. , 0.5,
0.5, 0.5, 2.5, 1. , 4. , 1. , 1. , 1.5, 1. , 1. , 1. ,
0.5, 1. , 0.5, 1. , 1. , 0.5, 3. , 2. , 0.5, 0.5, 1.5])
In [2128]: sps_array.row
Out[2128]:
array([ 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10,
10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13,
13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15], dtype=int32)
In [2129]: sps_array.col
Out[2129]:
array([ 1, 4, 6, 7, 11, 12, 13, 14, 15, 0, 4, 9, 12, 13, 14, 15, 4,
5, 12, 13, 4, 9, 13, 14, 0, 1, 2, 3, 5, 8, 10, 12, 13, 14,
2, 4, 12, 13, 0, 14, 15, 0, 8, 11, 13, 4, 7, 10, 11, 1, 3,
12, 14, 4, 8, 11, 13, 0, 7, 8, 10, 0, 1, 2, 4, 5, 9, 13,
0, 1, 2, 3, 4, 5, 7, 10, 12, 0, 1, 3, 4, 6, 9, 15, 0,
1, 6, 14], dtype=int32)
稀疏矩阵有一个nonzero
方法,其代码为:
A = self.tocoo()
nz_mask = A.data != 0
return (A.row[nz_mask],A.col[nz_mask])
它确保矩阵采用 coo
格式,确保数据中没有任何 'hidden' 零,并且 returns row
和 col
属性。
如果您的矩阵已经是 coo
,则不需要这样做,但如果矩阵是 csr
格式,则需要这样做。
所以你不需要通过密集的toarray
和np.nonzero
函数。但是 np.nonzero(sps_array)
确实有效,因为它将任务委托给 sps.array.nonzero()
.
将 transpose
应用于 nonzero
得到一个可能是您想要的数组:
In [2136]: np.transpose(np.nonzero(sps_array))
Out[2136]:
array([[ 0, 1],
[ 0, 4],
[ 0, 6],
[ 1, 7],
[ 1, 11],
[ 1, 12],
....
事实上有一个 np 函数可以做到这一点(对于任何数组)(查看它的代码或文档):
np.argwhere(sps_array)
(您不需要使用 nonzero(sps_array>0)
- 除非您担心负值。)
我正在处理一系列文本语料库,为此我需要构建一个共现矩阵。我目前正在测试编写和测试我的代码,所以每次我 运行 我都会得到一个不同的矩阵(因为 list(set())
是无序的。我已经使用 scipy.sparse.coo_matrix()
构建了一个稀疏矩阵并且想要能够使用由这种类型的构造生成的坐标和值。我想这将是最快和最有效的内存方式。在我尝试访问这些值的那一刻,我看到
[<1x16 sparse matrix of type '<class 'numpy.float32'>'
with 10 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
with 4 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
with 4 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
with 7 stored elements in Compressed Sparse Row format>, <1x16 sparse matrix of type '<class 'numpy.float32'>'
当我 print
稀疏矩阵时,我得到以下内容:
(0, 1) 0.5
(0, 4) 1.0
(0, 6) 0.5
(1, 7) 1.0
(1, 11) 1.0
(1, 12) 1.0
(1, 13) 0.5
(2, 14) 0.5
...
(15, 6) 1.0
(15, 9) 0.5
(15, 15) 3.0
(15, 0) 2.0
(15, 1) 0.5
(15, 6) 0.5
(15, 14) 1.5
我认为检索这些值是可能的。
对于上面的示例,我提取了以下实例:
row = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13,
13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15]
column = [1, 4, 6, 7, 11, 12, 13, 14, 15, 0, 4, 9, 12, 13, 14, 15, 4, 5, 12, 13,
4, 9, 13, 14, 0, 1, 2, 3, 5, 8, 10, 12, 13, 14, 2, 4, 12, 13, 0, 14,
15, 0, 8, 11, 13, 4, 7, 10, 11, 1, 3, 12, 14, 4, 8, 11, 13, 0, 7, 8,
10, 0, 1, 2, 4, 5, 9, 13, 0, 1, 2, 3, 4, 5, 7, 10, 12, 0, 1, 3, 4, 6,
9, 15, 0, 1, 6, 14]
values = [0.5, 1.0, 0.5, 1.0, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5,
1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 0.5, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0, 0.5,
0.5, 1.0, 0.5, 0.5, 1.0, 1.0, 1.5, 2.0, 1.0, 2.5, 1.0, 3.0, 1.0, 0.5,
1.5, 2.0, 1.0, 1.0, 2.0, 0.5, 1.0, 0.5, 2.0, 2.0, 0.5, 4.0, 0.5, 0.5,
0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5, 2.5, 1.0,
4.0, 1.0, 1.0, 1.5, 1.0, 1.0, 1.0, 0.5, 1.0, 0.5, 1.0, 1.0, 0.5, 3.0,
2.0, 0.5, 0.5, 1.5]
sps_array = sparse.coo_matrix((values, (row, column)), shape=(16, 16))
目前我可以使用 sps_array.toarray
转换 sps_array
,然后创建一个列表,其中
list1 = list(np.nonzero(sps_array > 0)[0])
list2 = list(np.nonzero(sps_array > 0)[1])
并创建以下 for
循环来重建坐标
index = 0
sps_coordinates = []
for i in range(token_size):
for j in range(list1_count[i]):
sps_coordinates.append((list1[index+j], list2[index+j]))
index += list1_count[i]
我通过
检索值list(sps_array[sps_array > 0]
相对于我所做的,是否有更有效的方法来获取这些坐标和值?
我用复制粘贴构建你的 sps_array
:
In [2126]: sps_array
Out[2126]:
<16x16 sparse matrix of type '<class 'numpy.float64'>'
with 88 stored elements in COOrdinate format>
coo
格式将其值存储在 3 个属性中,每个属性都是一个数组(从 3 个输入列表派生):
In [2127]: sps_array.data
Out[2127]:
array([ 0.5, 1. , 0.5, 1. , 1. , 1. , 0.5, 0.5, 1. , 1. , 0.5,
0.5, 1. , 0.5, 1. , 0.5, 1. , 0.5, 1. , 0.5, 0.5, 1. ,
0.5, 1. , 1. , 1. , 1. , 0.5, 0.5, 1. , 0.5, 0.5, 1. ,
1. , 1.5, 2. , 1. , 2.5, 1. , 3. , 1. , 0.5, 1.5, 2. ,
1. , 1. , 2. , 0.5, 1. , 0.5, 2. , 2. , 0.5, 4. , 0.5,
0.5, 0.5, 1. , 1. , 0.5, 0.5, 1. , 0.5, 1. , 1. , 0.5,
0.5, 0.5, 2.5, 1. , 4. , 1. , 1. , 1.5, 1. , 1. , 1. ,
0.5, 1. , 0.5, 1. , 1. , 0.5, 3. , 2. , 0.5, 0.5, 1.5])
In [2128]: sps_array.row
Out[2128]:
array([ 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10,
10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13,
13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15], dtype=int32)
In [2129]: sps_array.col
Out[2129]:
array([ 1, 4, 6, 7, 11, 12, 13, 14, 15, 0, 4, 9, 12, 13, 14, 15, 4,
5, 12, 13, 4, 9, 13, 14, 0, 1, 2, 3, 5, 8, 10, 12, 13, 14,
2, 4, 12, 13, 0, 14, 15, 0, 8, 11, 13, 4, 7, 10, 11, 1, 3,
12, 14, 4, 8, 11, 13, 0, 7, 8, 10, 0, 1, 2, 4, 5, 9, 13,
0, 1, 2, 3, 4, 5, 7, 10, 12, 0, 1, 3, 4, 6, 9, 15, 0,
1, 6, 14], dtype=int32)
稀疏矩阵有一个nonzero
方法,其代码为:
A = self.tocoo()
nz_mask = A.data != 0
return (A.row[nz_mask],A.col[nz_mask])
它确保矩阵采用 coo
格式,确保数据中没有任何 'hidden' 零,并且 returns row
和 col
属性。
如果您的矩阵已经是 coo
,则不需要这样做,但如果矩阵是 csr
格式,则需要这样做。
所以你不需要通过密集的toarray
和np.nonzero
函数。但是 np.nonzero(sps_array)
确实有效,因为它将任务委托给 sps.array.nonzero()
.
将 transpose
应用于 nonzero
得到一个可能是您想要的数组:
In [2136]: np.transpose(np.nonzero(sps_array))
Out[2136]:
array([[ 0, 1],
[ 0, 4],
[ 0, 6],
[ 1, 7],
[ 1, 11],
[ 1, 12],
....
事实上有一个 np 函数可以做到这一点(对于任何数组)(查看它的代码或文档):
np.argwhere(sps_array)
(您不需要使用 nonzero(sps_array>0)
- 除非您担心负值。)