Matlab:如何在卡尔曼滤波器进行状态估计后模拟模型

Matlab: How do I simulate the model after state estimation from Kalman filter

我正在尝试为以下一维 AR 模型实现卡尔曼滤波器的基本方程:

x(t) = a_1x(t-1) + a_2x(t-2) + w(t)  

y(t) = Cx(t) + v(t);

KF状态space型号:

x(t+1) = Ax(t) + w(t)

y(t) = Cx(t) + v(t)

w(t) = N(0,Q)

v(t) = N(0,R)

哪里

 % A - state transition matrix
% C - observation (output) matrix
% Q - state noise covariance
% R - observation noise covariance
% x0 - initial state mean
% P0 - initial state covariance

%%% Matlab script to simulate data and process usiung Kalman for the state
%%% estimation of AR(2) time series.
% Linear system representation
% x_n+1 = A x_n + Bw_n
% y_n = Cx_n + v_n
% w = N(0,Q); v = N(0,R)
clc
clear all

T = 100; % number of data samples
order = 2;
% True coefficients of AR model
  a1 = 0.195;
  a2 = -0.95;

A = [ a1  a2;
      1  0 ];
C = [ 1 0 ];
B = [1;
      0];

 x =[ rand(order,1) zeros(order,T-1)];



sigma_2_w =1;  % variance of the excitation signal for driving the AR model(process noise)
sigma_2_v = 0.01; % variance of measure noise


Q=eye(order);
P=Q;




%Simulate AR model time series, x;



sqrtW=sqrtm(sigma_2_w);
%simulation of the system
for t = 1:T-1
    x(:,t+1) = A*x(:,t) + B*sqrtW*randn(1,1);
end

%noisy observation

y = C*x + sqrt(sigma_2_v)*randn(1,T);

%R=sigma_2_v*diag(diag(x));
%R = diag(R);

R = var(y);
z = zeros(1,length(y));
z = y;

 x0=mean(y);
for i=1:T-1
[xpred, Ppred] = predict(x0,P, A, Q);
[nu, S] = innovation(xpred, Ppred, z(i), C, R);
[xnew, P] = innovation_update(xpred, Ppred, nu, S, C);
end

%plot
xhat = xnew';


plot(xhat(:,1),'red');
hold on;
plot(x(:,1));



function [xpred, Ppred] = predict(x0,P, A, Q)
xpred = A*x0;
Ppred = A*P*A' + Q;
end

function [nu, S] = innovation(xpred, Ppred, y, C, R)
nu = y - C*xpred; %% innovation
S = R + C*Ppred*C'; %% innovation covariance
end

function [xnew, Pnew] = innovation_update(xpred, Ppred, nu, S, C)
K = Ppred*C'*inv(S); %% Kalman gain
xnew = xpred + K*nu; %% new state
Pnew = Ppred - Ppred*K*C; %% new covariance
end

问题:我想通过绘图查看估计状态 xnew 与实际状态 x 的接近程度。但是,函数 innovation_update 返回的 xnew 是一个 2by2 矩阵!如何用估计值模拟时间序列?

您不需要将 x 初始化为任何东西,只需设置初始状态 x(:,1),"simulation of the system" 循环将填充其余部分。 糟糕,我看到你已经在这么做了!

稍后,在从噪声观察 y 推断状态 xnew 的循环中,您可以添加以下行:

[xnew, P] = innovation_update(xpred, Ppred, nu, S, C);
yhat(i) = C*xnew; % Observed value at time step i, assuming inferred state xnew

最后,您应该绘制 yhaty 进行比较。

如果您想为估计的不确定性添加误差线,那么您还应该存储 Phat(i) = sqrt(C*P*C') 并调用 errorbar(yhat,Phat) 而不是 plot(yhat)