在 Seaborn 的 Regplot 中使用日期时间
Using Datetimes with Seaborn's Regplot
我在 Jupyter/IPython 工作以绘制每天的单词量,但在 Seaborn 中使用带有 Regplot 的日期时间时遇到问题。 Regplot 本身显然 does not support regression against date data,虽然我想要完成的事情并不一定需要 Regplot 的解决方法——也许只是一种格式化 x 轴标签的方法。
一个最小的工作示例,使用简单的时间戳:
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import seaborn as sns
import time
import datetime
import radar
sns.set(style="whitegrid", color_codes=True)
data = pd.DataFrame([])
for i in np.arange(1, 10):
date = radar.random_datetime(start='2016-05-20', stop='2016-05-25')
data = data.append(pd.DataFrame({'Date': time.mktime(date.timetuple()), 'Words': i + 100}, index=[0]), ignore_index=True)
points = plt.scatter(x = data['Date'], y = data["Words"], c=data["Words"], s=75, cmap="BrBG")
plt.colorbar(points)
sns.regplot(x = data['Date'], y = data["Words"], data=data, scatter=False, color='r')
它呈现了一个带有重叠趋势线的散点图:
但是日期是日期时间:
points = plt.scatter(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], c=data["Words"], s=75, cmap="BrBG")
plt.colorbar(points)
sns.regplot(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], data=data, scatter=False, color='r')
它 returns 有以下错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-7-d6488afe3dcb> in <module>()
1 points = plt.scatter(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], c=data["Words"], s=75, cmap="BrBG")
2 plt.colorbar(points)
----> 3 sns.regplot(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], data=data, scatter=False, color='r')
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in regplot(x, y, data, x_estimator, x_bins, x_ci, scatter, fit_reg, ci, n_boot, units, order, logistic, lowess, robust, logx, x_partial, y_partial, truncate, dropna, x_jitter, y_jitter, label, color, marker, scatter_kws, line_kws, ax)
777 scatter_kws["marker"] = marker
778 line_kws = {} if line_kws is None else copy.copy(line_kws)
--> 779 plotter.plot(ax, scatter_kws, line_kws)
780 return ax
781
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in plot(self, ax, scatter_kws, line_kws)
330 self.scatterplot(ax, scatter_kws)
331 if self.fit_reg:
--> 332 self.lineplot(ax, line_kws)
333
334 # Label the axes
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in lineplot(self, ax, kws)
375
376 # Fit the regression model
--> 377 grid, yhat, err_bands = self.fit_regression(ax)
378
379 # Get set default aesthetics
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in fit_regression(self, ax, x_range, grid)
207 yhat, yhat_boots = self.fit_logx(grid)
208 else:
--> 209 yhat, yhat_boots = self.fit_fast(grid)
210
211 # Compute the confidence interval at each grid point
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in fit_fast(self, grid)
222 grid = np.c_[np.ones(len(grid)), grid]
223 reg_func = lambda _x, _y: np.linalg.pinv(_x).dot(_y)
--> 224 yhat = grid.dot(reg_func(X, y))
225 if self.ci is None:
226 return yhat, None
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in <lambda>(_x, _y)
221 X, y = np.c_[np.ones(len(self.x)), self.x], self.y
222 grid = np.c_[np.ones(len(grid)), grid]
--> 223 reg_func = lambda _x, _y: np.linalg.pinv(_x).dot(_y)
224 yhat = grid.dot(reg_func(X, y))
225 if self.ci is None:
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\numpy\linalg\linalg.py in pinv(a, rcond)
1614 a, wrap = _makearray(a)
1615 _assertNoEmpty2d(a)
-> 1616 a = a.conjugate()
1617 u, s, vt = svd(a, 0)
1618 m = u.shape[0]
AttributeError: 'datetime.datetime' object has no attribute 'conjugate'
尽管散点图确实以格式良好的日期时间呈现:
有没有办法在 Regplot 中使用日期时间,或者使用时间戳但将 x 轴上的标签格式化为日期?
您可以在 xticks 的位置获取时间戳的值,然后将它们转换为您想要的格式。
ax = plt.gca()
xticks = ax.get_xticks()
xticks_dates = [datetime.datetime.fromtimestamp(x).strftime('%Y-%m-%d %H:%M:%S') for x in xticks]
ax.set_xticklabels(xticks_dates)
我在 Jupyter/IPython 工作以绘制每天的单词量,但在 Seaborn 中使用带有 Regplot 的日期时间时遇到问题。 Regplot 本身显然 does not support regression against date data,虽然我想要完成的事情并不一定需要 Regplot 的解决方法——也许只是一种格式化 x 轴标签的方法。
一个最小的工作示例,使用简单的时间戳:
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import seaborn as sns
import time
import datetime
import radar
sns.set(style="whitegrid", color_codes=True)
data = pd.DataFrame([])
for i in np.arange(1, 10):
date = radar.random_datetime(start='2016-05-20', stop='2016-05-25')
data = data.append(pd.DataFrame({'Date': time.mktime(date.timetuple()), 'Words': i + 100}, index=[0]), ignore_index=True)
points = plt.scatter(x = data['Date'], y = data["Words"], c=data["Words"], s=75, cmap="BrBG")
plt.colorbar(points)
sns.regplot(x = data['Date'], y = data["Words"], data=data, scatter=False, color='r')
它呈现了一个带有重叠趋势线的散点图:
但是日期是日期时间:
points = plt.scatter(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], c=data["Words"], s=75, cmap="BrBG")
plt.colorbar(points)
sns.regplot(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], data=data, scatter=False, color='r')
它 returns 有以下错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-7-d6488afe3dcb> in <module>()
1 points = plt.scatter(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], c=data["Words"], s=75, cmap="BrBG")
2 plt.colorbar(points)
----> 3 sns.regplot(x = pd.to_datetime(data['Date'], unit='s').dt.to_pydatetime(), y = data["Words"], data=data, scatter=False, color='r')
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in regplot(x, y, data, x_estimator, x_bins, x_ci, scatter, fit_reg, ci, n_boot, units, order, logistic, lowess, robust, logx, x_partial, y_partial, truncate, dropna, x_jitter, y_jitter, label, color, marker, scatter_kws, line_kws, ax)
777 scatter_kws["marker"] = marker
778 line_kws = {} if line_kws is None else copy.copy(line_kws)
--> 779 plotter.plot(ax, scatter_kws, line_kws)
780 return ax
781
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in plot(self, ax, scatter_kws, line_kws)
330 self.scatterplot(ax, scatter_kws)
331 if self.fit_reg:
--> 332 self.lineplot(ax, line_kws)
333
334 # Label the axes
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in lineplot(self, ax, kws)
375
376 # Fit the regression model
--> 377 grid, yhat, err_bands = self.fit_regression(ax)
378
379 # Get set default aesthetics
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in fit_regression(self, ax, x_range, grid)
207 yhat, yhat_boots = self.fit_logx(grid)
208 else:
--> 209 yhat, yhat_boots = self.fit_fast(grid)
210
211 # Compute the confidence interval at each grid point
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in fit_fast(self, grid)
222 grid = np.c_[np.ones(len(grid)), grid]
223 reg_func = lambda _x, _y: np.linalg.pinv(_x).dot(_y)
--> 224 yhat = grid.dot(reg_func(X, y))
225 if self.ci is None:
226 return yhat, None
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\seaborn\linearmodels.py in <lambda>(_x, _y)
221 X, y = np.c_[np.ones(len(self.x)), self.x], self.y
222 grid = np.c_[np.ones(len(grid)), grid]
--> 223 reg_func = lambda _x, _y: np.linalg.pinv(_x).dot(_y)
224 yhat = grid.dot(reg_func(X, y))
225 if self.ci is None:
C:\Python\WinPython-64bit-3.5.2.2Qt5\python-3.5.2.amd64\lib\site-packages\numpy\linalg\linalg.py in pinv(a, rcond)
1614 a, wrap = _makearray(a)
1615 _assertNoEmpty2d(a)
-> 1616 a = a.conjugate()
1617 u, s, vt = svd(a, 0)
1618 m = u.shape[0]
AttributeError: 'datetime.datetime' object has no attribute 'conjugate'
尽管散点图确实以格式良好的日期时间呈现:
有没有办法在 Regplot 中使用日期时间,或者使用时间戳但将 x 轴上的标签格式化为日期?
您可以在 xticks 的位置获取时间戳的值,然后将它们转换为您想要的格式。
ax = plt.gca()
xticks = ax.get_xticks()
xticks_dates = [datetime.datetime.fromtimestamp(x).strftime('%Y-%m-%d %H:%M:%S') for x in xticks]
ax.set_xticklabels(xticks_dates)