Spark SQL - 如何按小时查找交易总数
Spark SQL - How to find total number of transactions on an hourly basis
例如,如果我有一个 table 和 transaction number
和 transaction date
[作为 timestamp
] 列,我如何找出交易总数hourly basis
?
是否有任何 Spark sql 函数可用于这种范围计算?
这里我尝试给出一些方法的指针,比较完整的代码,请看这里
下面是python中的方法。您可以修改以下示例以符合您的要求,即相应的交易日期开始时间、结束时间。在你的情况下而不是 id 它的交易号码。
# Import functions.
from pyspark.sql.functions import *
# Create a simple DataFrame.
data = [
("2015-01-01 23:59:59", "2015-01-02 00:01:02", 1),
("2015-01-02 23:00:00", "2015-01-02 23:59:59", 2),
("2015-01-02 22:59:58", "2015-01-02 23:59:59", 3)]
df = sqlContext.createDataFrame(data, ["start_time", "end_time", "id"])
df = df.select(
df.start_time.cast("timestamp").alias("start_time"),
df.end_time.cast("timestamp").alias("end_time"),
df.id)
# Get all records that have a start_time and end_time in the
# same day, and the difference between the end_time and start_time
# is less or equal to 1 hour.
condition = \
(to_date(df.start_time) == to_date(df.end_time)) & \
(df.start_time + expr("INTERVAL 1 HOUR") >= df.end_time)
df.filter(condition).show()
+———————+———————+—+
|start_time | end_time |id |
+———————+———————+—+
|2015-01-02 23:00:00.0|2015-01-02 23:59:59.0|2 |
+———————+———————+—+
使用此方法,您可以应用分组功能来查找您案例中的交易总数。
以上是python代码,scala呢?
expr
function 上面使用的在 scala 中也可用
也看看
下面描述了..
import org.apache.spark.sql.functions._
val diff_secs_col = col("ts1").cast("long") - col("ts2").cast("long")
val df2 = df1
.withColumn( "diff_secs", diff_secs_col )
.withColumn( "diff_mins", diff_secs_col / 60D )
.withColumn( "diff_hrs", diff_secs_col / 3600D )
.withColumn( "diff_days", diff_secs_col / (24D * 3600D) )
您可以使用from_unixtime功能。
val sqlContext = new SQLContext(sc)
import org.apache.spark.sql.functions._
import sqlContext.implicits._
val df = // your dataframe, assuming transaction_date is timestamp in seconds
df.select('transaction_number, hour(from_unixtime('transaction_date)) as 'hour)
.groupBy('hour)
.agg(count('transaction_number) as 'transactions)
结果:
+----+------------+
|hour|transactions|
+----+------------+
| 10| 1000|
| 12| 2000|
| 13| 3000|
| 14| 4000|
| ..| ....|
+----+------------+
例如,如果我有一个 table 和 transaction number
和 transaction date
[作为 timestamp
] 列,我如何找出交易总数hourly basis
?
是否有任何 Spark sql 函数可用于这种范围计算?
这里我尝试给出一些方法的指针,比较完整的代码,请看这里
下面是python中的方法。您可以修改以下示例以符合您的要求,即相应的交易日期开始时间、结束时间。在你的情况下而不是 id 它的交易号码。
# Import functions.
from pyspark.sql.functions import *
# Create a simple DataFrame.
data = [
("2015-01-01 23:59:59", "2015-01-02 00:01:02", 1),
("2015-01-02 23:00:00", "2015-01-02 23:59:59", 2),
("2015-01-02 22:59:58", "2015-01-02 23:59:59", 3)]
df = sqlContext.createDataFrame(data, ["start_time", "end_time", "id"])
df = df.select(
df.start_time.cast("timestamp").alias("start_time"),
df.end_time.cast("timestamp").alias("end_time"),
df.id)
# Get all records that have a start_time and end_time in the
# same day, and the difference between the end_time and start_time
# is less or equal to 1 hour.
condition = \
(to_date(df.start_time) == to_date(df.end_time)) & \
(df.start_time + expr("INTERVAL 1 HOUR") >= df.end_time)
df.filter(condition).show()
+———————+———————+—+
|start_time | end_time |id |
+———————+———————+—+
|2015-01-02 23:00:00.0|2015-01-02 23:59:59.0|2 |
+———————+———————+—+
使用此方法,您可以应用分组功能来查找您案例中的交易总数。
以上是python代码,scala呢?
expr
function 上面使用的在 scala 中也可用
也看看
import org.apache.spark.sql.functions._
val diff_secs_col = col("ts1").cast("long") - col("ts2").cast("long")
val df2 = df1
.withColumn( "diff_secs", diff_secs_col )
.withColumn( "diff_mins", diff_secs_col / 60D )
.withColumn( "diff_hrs", diff_secs_col / 3600D )
.withColumn( "diff_days", diff_secs_col / (24D * 3600D) )
您可以使用from_unixtime功能。
val sqlContext = new SQLContext(sc)
import org.apache.spark.sql.functions._
import sqlContext.implicits._
val df = // your dataframe, assuming transaction_date is timestamp in seconds
df.select('transaction_number, hour(from_unixtime('transaction_date)) as 'hour)
.groupBy('hour)
.agg(count('transaction_number) as 'transactions)
结果:
+----+------------+
|hour|transactions|
+----+------------+
| 10| 1000|
| 12| 2000|
| 13| 3000|
| 14| 4000|
| ..| ....|
+----+------------+