使用单独的列整数向 pandas 中的列添加天数

Adding days to column in pandas using separate column integers

我试过 datetime.timedelta 系列以及 pd.DateOffset。两者都不起作用。我知道我可以遍历此数据框并手动添加它们,但我一直在寻找一种矢量化方法。

示例:

d = {pd.Timestamp('2015-01-02'):{'days_delinquent':11}, pd.Timestamp('2015-01-15'):{'days_delinquent':23}}
>>> dataf = pd.DataFrame.from_dict(d,orient='index')
>>> dataf
            days_delinquent
2015-01-02               11
2015-01-15               23

只是想在下面的行中添加 11 天和 23 天。我在现实生活中添加的列不是索引,但显然我可以在执行此操作时将其设为索引。

我想这不是不言自明的,但输出将是一个新列,其中包含日期(在本例中为索引)+ datetime.timedelta(days=dataf['days_delinquent'])

import pandas as pd

d = {pd.Timestamp('2015-01-02'):{'days_delinquent':11}, 
    pd.Timestamp('2015-01-15'):{'days_delinquent':23}}
df = pd.DataFrame.from_dict(d,orient='index')

def add_days(x):
    return x['index'] + pd.Timedelta(days=x['days_delinquent'])

df.reset_index().apply(add_days,axis=1)

输出:

0   2015-01-13
1   2015-02-07
dtype: datetime64[ns]
dataf['result'] = [d + datetime.timedelta(delta) 
                   for d, delta in zip(dataf.index, dataf.days_delinquent)]

dataf
Out[56]: 
            days_delinquent     result
2015-01-02               11 2015-01-13
2015-01-15               23 2015-02-07

您可以将 days_delinquent 列转换为 timedelta64[D](以天为单位的偏移量)并将其添加到索引中,例如:

import pandas as pd

d = {pd.Timestamp('2015-01-02'):{'days_delinquent':11}, pd.Timestamp('2015-01-15'):{'days_delinquent':23}}
df = pd.DataFrame.from_dict(d,orient='index')
df['returned_on'] = df.index + df.days_delinquent.astype('timedelta64[D]')

好多了(感谢DSM)是使用pd.to_timedelta所以如果需要更容易改变单位:

df['returned_on'] = df.index + pd.to_timedelta(df.days_delinquent, 'D')

给你:

            days_delinquent returned_on
2015-01-02               11  2015-01-13
2015-01-15               23  2015-02-07