PySpark Dataframes:如何使用紧凑的代码过滤多个条件?

PySpark Dataframes: how to filter on multiple conditions with compact code?

如果我有一个列名列表,并且我想在这些列的值大于零的情况下对行进行过滤,我可以做类似的事情吗?

columns = ['colA','colB','colC','colD','colE','colF']
new_df = df.filter(any([df[c]>0 for c in columns]))

这个returns:

ValueError: Cannot convert column into bool: please use '&' for 'and', '|' for 'or', '~' for 'not' when building DataFrame boolean expressions

我想我可以对这些列求和,并且只能在一列上进行筛选(因为我没有负数。但是如果我有求和技巧就行不通了。无论如何,如果我必须筛选那些与总和不同的另一个条件的列,我怎么能做我想做的事? 有什么想法吗?

您可以改用 or_ 运算符:

from operator import or_
from functools import reduce

newdf = df.where(reduce(or_, (df[c] > 0 for c in df.columns)))

编辑: 更多 pythonista 解决方案:

from pyspark.sql.functions import lit

def any_(*preds):
    cond = lit(False)
    for pred in preds:
        cond = cond | pred
    return cond

newdf = df.where(any_(*[df[c] > 0 for c in df.columns]))

编辑 2: 完整示例:

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 2.1.0-SNAPSHOT
      /_/

Using Python version 3.5.1 (default, Dec  7 2015 11:16:01)
SparkSession available as 'spark'.

In [1]: from pyspark.sql.functions import lit

In [2]: %pas
%paste     %pastebin  

In [2]: %paste
def any_(*preds):
    cond = lit(False)
    for pred in preds:
        cond = cond | pred
    return cond

## -- End pasted text --

In [3]: df = sc.parallelize([(1, 2, 3), (-1, -2, -3), (1, -1, 0)]).toDF()

In [4]: df.where(any_(*[df[c] > 0 for c in df.columns])).show()
# +---+---+---+
# | _1| _2| _3|
# +---+---+---+
# |  1|  2|  3|
# |  1| -1|  0|
# +---+---+---+

In [5]: df[any_(*[df[c] > 0 for c in df.columns])].show()
# +---+---+---+
# | _1| _2| _3|
# +---+---+---+
# |  1|  2|  3|
# |  1| -1|  0|
# +---+---+---+

In [6]: df.show()
# +---+---+---+
# | _1| _2| _3|
# +---+---+---+
# |  1|  2|  3|
# | -1| -2| -3|
# |  1| -1|  0|
# +---+---+---+