堆叠两个不同维度的稀疏矩阵

Stacking two sparse matrices with different dimensions

我有两个稀疏矩阵(从 sklearn HashVectorizer 中创建,来自两组特征 - 每组对应一个特征)。我想将它们连接起来,以便以后将它们用于聚类。但是,我遇到了维度问题,因为这两个矩阵的行维度不同。

这是一个例子:

Xa = [-0.57735027 -0.57735027  0.57735027 -0.57735027 -0.57735027  0.57735027
  0.5         0.5        -0.5         0.5         0.5        -0.5         0.5
  0.5        -0.5         0.5        -0.5         0.5         0.5        -0.5
  0.5         0.5       ]

Xb = [-0.57735027 -0.57735027  0.57735027 -0.57735027  0.57735027  0.57735027
 -0.5         0.5         0.5         0.5        -0.5        -0.5         0.5
 -0.5        -0.5        -0.5         0.5         0.5       ]

XaXb 都是 <class 'scipy.sparse.csr.csr_matrix'> 类型。形状为 Xa.shape = (6, 1048576) Xb.shape = (5, 1048576)。我得到的错误是(我现在知道为什么会这样):

    X = hstack((Xa, Xb))
  File "/usr/local/lib/python2.7/site-packages/scipy/sparse/construct.py", line 464, in hstack
    return bmat([blocks], format=format, dtype=dtype)
  File "/usr/local/lib/python2.7/site-packages/scipy/sparse/construct.py", line 581, in bmat
    'row dimensions' % i)
ValueError: blocks[0,:] has incompatible row dimensions

有没有办法堆叠稀疏矩阵,尽管它们的维度不规则?也许有一些填充?

我查看了这些帖子:

您可以用空的稀疏矩阵填充它。

您想水平堆叠它,所以您需要填充较小的矩阵,使其具有相同的行数更大的矩阵。为此,你垂直堆叠它与形状矩阵(difference in number of rows, number of columns of original matrix)

像这样:

from scipy.sparse import csr_matrix
from scipy.sparse import hstack
from scipy.sparse import vstack

# Create 2 empty sparse matrix for demo
Xa = csr_matrix((4, 4))
Xb = csr_matrix((3, 5))


diff_n_rows = Xa.shape[0] - Xb.shape[0]

Xb_new = vstack((Xb, csr_matrix((diff_n_rows, Xb.shape[1])))) 
#where diff_n_rows is the difference of the number of rows between Xa and Xb

X = hstack((Xa, Xb_new))
X

这导致:

<4x9 sparse matrix of type '<class 'numpy.float64'>'
    with 0 stored elements in COOrdinate format>