Akka Http 性能调优

Akka Http Performance tuning

我正在对 Akka-http 框架(版本:10.0)执行负载测试,我正在使用 wrk 工具。 wrk 命令:

wrk -t6 -c10000 -d 60s --timeout 10s --latency http://localhost:8080/hello

第一个 运行 没有任何阻塞调用,

object WebServer {

  implicit val system = ActorSystem("my-system")
  implicit val materializer = ActorMaterializer()
  implicit val executionContext = system.dispatcher
  def main(args: Array[String]) {


    val bindingFuture = Http().bindAndHandle(router.route, "localhost", 8080)

    println(
      s"Server online at http://localhost:8080/\nPress RETURN to stop...")
    StdIn.readLine() // let it run until user presses return
    bindingFuture
      .flatMap(_.unbind()) // trigger unbinding from the port
      .onComplete(_ => system.terminate()) // and shutdown when done
  }
}

object router {
  implicit val executionContext = WebServer.executionContext


  val route =
    path("hello") {
      get {
        complete {
        "Ok"
        }
      }
    }
}

wrk 的输出:

    Running 1m test @ http://localhost:8080/hello
  6 threads and 10000 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     4.22ms   16.41ms   2.08s    98.30%
    Req/Sec     9.86k     6.31k   25.79k    62.56%
  Latency Distribution
     50%    3.14ms
     75%    3.50ms
     90%    4.19ms
     99%   31.08ms
  3477084 requests in 1.00m, 477.50MB read
  Socket errors: connect 9751, read 344, write 0, timeout 0
Requests/sec:  57860.04
Transfer/sec:      7.95MB

现在,如果我在路由中添加一个未来的呼叫,然后 运行 再次测试。

val route =
    path("hello") {
      get {
        complete {
          Future { // Blocking code
            Thread.sleep(100)
            "OK"
          }
        }
      }
    }

wrk 的输出:

Running 1m test @ http://localhost:8080/hello
  6 threads and 10000 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   527.07ms  491.20ms  10.00s    88.19%
    Req/Sec    49.75     39.55   257.00     69.77%
  Latency Distribution
     50%  379.28ms
     75%  632.98ms
     90%    1.08s 
     99%    2.07s 
  13744 requests in 1.00m, 1.89MB read
  Socket errors: connect 9751, read 385, write 38, timeout 98
Requests/sec:    228.88
Transfer/sec:     32.19KB

正如您在未来的调用中看到的那样,只有 13744 个请求得到处理

在遵循 Akka documentation 之后,我为创建最大 200 个线程的路由添加了一个单独的调度程序线程池

implicit val executionContext = WebServer.system.dispatchers.lookup("my-blocking-dispatcher")
// config of dispatcher
my-blocking-dispatcher {
  type = Dispatcher
  executor = "thread-pool-executor"
  thread-pool-executor {
    // or in Akka 2.4.2+
    fixed-pool-size = 200
  }
  throughput = 1
}

经过以上改动,性能提升了一点

Running 1m test @ http://localhost:8080/hello
  6 threads and 10000 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   127.03ms   21.10ms 504.28ms   84.30%
    Req/Sec   320.89    175.58   646.00     60.01%
  Latency Distribution
     50%  122.85ms
     75%  135.16ms
     90%  147.21ms
     99%  190.03ms
  114378 requests in 1.00m, 15.71MB read
  Socket errors: connect 9751, read 284, write 0, timeout 0
Requests/sec:   1903.01
Transfer/sec:    267.61KB

my-blocking-dispatcher 配置中 如果我将池大小增加到 200 以上,性能是一样的。

现在,我应该使用哪些其他参数或配置来提高性能,同时使用未来 call.So 该应用程序提供最大吞吐量。

首先声明一些免责声明:我之前没有使用过 wrk 工具,所以我可能会出错。以下是我为这个答案所做的假设:

  1. 连接数独立于线程数,即如果我指定 -t4 -c10000 它保持 10000 个连接,而不是 4 * 10000。
  2. 对于每个连接,行为如下:它发送请求,完全接收响应,然后立即发送下一个,等等,直到 运行 结束。

另外我运行服务器和wrk在同一台机器上,我的机器好像比你的弱(我只有双核CPU),所以我已经将 wrk 的线程数减少到 2,连接数减少到 1000,以获得不错的结果。

我用的Akka Http版本是10.0.1,wrk版本是4.0.2.

现在回答。让我们看看您的阻塞代码:

Future { // Blocking code
  Thread.sleep(100)
  "OK"
}

这意味着,每个请求至少需要 100 毫秒。如果您有 200 个线程和 1000 个连接,则时间线将如下所示:

Msg: 0       200      400      600      800     1000     1200      2000
     |--------|--------|--------|--------|--------|--------|---..---|---...
Ms:  0       100      200      300      400      500      600      1000

其中 Msg 是已处理消息的数量,Ms 是经过的时间(以毫秒为单位)。

这使我们每秒处理 2000 条消息,或每 30 秒约 60000 条消息,这与测试数据基本一致:

wrk -t2 -c1000 -d 30s --timeout 10s --latency http://localhost:8080/hello
Running 30s test @ http://localhost:8080/hello
  2 threads and 1000 connections
  Thread Stats   Avg     Stdev     Max   +/- Stdev
    Latency   412.30ms   126.87ms 631.78ms   82.89%
    Req/Sec     0.95k    204.41     1.40k    75.73%
  Latency Distribution
     50%  455.18ms
     75%  512.93ms
     90%  517.72ms
     99%  528.19ms
here: --> 56104 requests in 30.09s <--, 7.70MB read
  Socket errors: connect 0, read 1349, write 14, timeout 0
Requests/sec:   1864.76
Transfer/sec:    262.23KB

很明显,这个数字(每秒 2000 条消息)严格受线程数限制。例如。如果我们有 300 个线程,我们每 100 毫秒处理 300 条消息,所以我们每秒有 3000 条消息,如果我们的系统可以处理这么多线程的话。让我们看看如果我们为每个连接提供 1 个线程,即池中有 1000 个线程,我们会如何:

wrk -t2 -c1000 -d 30s --timeout 10s --latency http://localhost:8080/hello
Running 30s test @ http://localhost:8080/hello
  2 threads and 1000 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   107.08ms   16.86ms 582.44ms   97.24%
    Req/Sec     3.80k     1.22k    5.05k    79.28%
  Latency Distribution
     50%  104.77ms
     75%  106.74ms
     90%  110.01ms
     99%  155.24ms
  223751 requests in 30.08s, 30.73MB read
  Socket errors: connect 0, read 1149, write 1, timeout 0
Requests/sec:   7439.64
Transfer/sec:      1.02MB

如您所见,现在一个请求平均花费几乎正好 100 毫秒,即我们投入 Thread.sleep 的时间相同。看来我们不能比这更快了!现在我们几乎处于 one thread per request 的标准情况下,在异步 IO 让服务器扩展得更高之前,它工作了很多年。

为了便于比较,以下是在我的机器上使用默认 fork-join 线程池的完全非阻塞测试结果:

complete {
  Future {
    "OK"
  }
}

====>

wrk -t2 -c1000 -d 30s --timeout 10s --latency http://localhost:8080/hello
Running 30s test @ http://localhost:8080/hello
  2 threads and 1000 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    15.50ms   14.35ms 468.11ms   93.43%
    Req/Sec    22.00k     5.99k   34.67k    72.95%
  Latency Distribution
     50%   13.16ms
     75%   18.77ms
     90%   25.72ms
     99%   66.65ms
  1289402 requests in 30.02s, 177.07MB read
  Socket errors: connect 0, read 1103, write 42, timeout 0
Requests/sec:  42946.15
Transfer/sec:      5.90MB

总而言之,如果您使用阻塞操作,则每个请求需要一个线程来实现最佳吞吐量,因此请相应地配置您的线程池。您的系统可以处理的线程数存在自然限制,您可能需要调整 OS 以获得最大线程数。为获得最佳吞吐量,请避免阻塞操作。

也不要将异步操作与非阻塞操作混淆。您使用 FutureThread.sleep 的代码是异步但阻塞操作的完美示例。许多流行的软件都在这种模式下运行(一些遗留的 HTTP 客户端、Cassandra 驱动程序、AWS Java SDK 等)。要充分享受非阻塞 HTTP 服务器的好处,您需要始终保持非阻塞,而不仅仅是异步。这可能并不总是可能的,但这是值得努力的事情。

使用此配置,我在本地主机上获得了 x3 性能:

akka {
  actor {
    default-dispatcher {
      fork-join-executor {
        parallelism-min = 1
        parallelism-max = 64
        parallelism-factor = 1
      }
      throughput = 64
    }
  }

  http {
    host-connection-pool {
      max-connections = 10000
      max-open-requests = 4096
    }

    server {
      pipelining-limit = 1024
      max-connections = 4096
      backlog = 1024
    }
  }
}

也许这些参数的其他值会更好(如果是请写信给我)。

Akka Http 版本 10.1.12.