Python Pandas: 添加一级多索引
Python Pandas: Add a level of MultIndexing
我有以下数据框:
我想添加的列有额外的索引级别,如红色所示。
我创建的 MultiIndex 如下:
MI = pd.MultiIndex(levels=[['trade_input', 'mae_function'], list(df)],
labels=[[0, 0, 1, 1, 1, 1], range(len(list(df)))],
names=['first', 'second'])
如何将 MultiIndex 添加到现有的 DataFrame?我如何指定它应该应用于列?
下面是重新创建原始 DataFrame 的数据和命令:
df = pd.DataFrame(data = dict, columns = ['entry_index', 'exit_index', 'direction', 'high', 'low', 'compar_tuples'])
dict = {'compar_tuples': {0: [(1, slice('1', '1', None))],
1: [(1, slice('1', '2', None)), (2, slice('2', '2', None))],
2: [(1, slice('1', '3', None)),
(2, slice('2', '3', None)),
(3, slice('3', '3', None))],
3: [(1, slice('1', '4', None)),
(2, slice('2', '4', None)),
(3, slice('3', '4', None)),
(4, slice('4', '4', None))],
4: [(1, slice('1', '5', None)),
(2, slice('2', '5', None)),
(3, slice('3', '5', None)),
(4, slice('4', '5', None)),
(5, slice('5', '5', None))],
5: [(1, slice('1', '6', None)),
(2, slice('2', '6', None)),
(3, slice('3', '6', None)),
(4, slice('4', '6', None)),
(5, slice('5', '6', None)),
(6, slice('6', '6', None))],
6: [(1, slice('1', '7', None)),
(2, slice('2', '7', None)),
(3, slice('3', '7', None)),
(4, slice('4', '7', None)),
(5, slice('5', '7', None)),
(6, slice('6', '7', None)),
(7, slice('7', '7', None))]},
'direction': {0: 1, 1: -1, 2: -1, 3: -1, 4: -1, 5: -1, 6: -1},
'entry_index': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0},
'exit_index': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7},
'high': {0: 1209.75,
1: 1211.0,
2: 1211.25,
3: 1207.25,
4: 1206.25,
5: 1205.75,
6: 1205.5},
'low': {0: 1207.25,
1: 1207.5,
2: 1205.75,
3: 1206.0,
4: 1201.0,
5: 1202.75,
6: 1203.75}}
最简单的方法是使用 pd.concat
和 keys
参数
ti_cols = df.columns[:2]
mae_cols = df.columns[2:]
pd.concat([df[ti_cols], df[mae_cols]], axis=1, keys=['trade_inputs', 'mae_function'])
但是,如果您费尽心思制作了多重索引,则可以将其分配给 columns
属性
df.columns = MI
df
df.index = index
对我有用。
我有以下数据框:
我想添加的列有额外的索引级别,如红色所示。
我创建的 MultiIndex 如下:
MI = pd.MultiIndex(levels=[['trade_input', 'mae_function'], list(df)],
labels=[[0, 0, 1, 1, 1, 1], range(len(list(df)))],
names=['first', 'second'])
如何将 MultiIndex 添加到现有的 DataFrame?我如何指定它应该应用于列?
下面是重新创建原始 DataFrame 的数据和命令:
df = pd.DataFrame(data = dict, columns = ['entry_index', 'exit_index', 'direction', 'high', 'low', 'compar_tuples'])
dict = {'compar_tuples': {0: [(1, slice('1', '1', None))],
1: [(1, slice('1', '2', None)), (2, slice('2', '2', None))],
2: [(1, slice('1', '3', None)),
(2, slice('2', '3', None)),
(3, slice('3', '3', None))],
3: [(1, slice('1', '4', None)),
(2, slice('2', '4', None)),
(3, slice('3', '4', None)),
(4, slice('4', '4', None))],
4: [(1, slice('1', '5', None)),
(2, slice('2', '5', None)),
(3, slice('3', '5', None)),
(4, slice('4', '5', None)),
(5, slice('5', '5', None))],
5: [(1, slice('1', '6', None)),
(2, slice('2', '6', None)),
(3, slice('3', '6', None)),
(4, slice('4', '6', None)),
(5, slice('5', '6', None)),
(6, slice('6', '6', None))],
6: [(1, slice('1', '7', None)),
(2, slice('2', '7', None)),
(3, slice('3', '7', None)),
(4, slice('4', '7', None)),
(5, slice('5', '7', None)),
(6, slice('6', '7', None)),
(7, slice('7', '7', None))]},
'direction': {0: 1, 1: -1, 2: -1, 3: -1, 4: -1, 5: -1, 6: -1},
'entry_index': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0},
'exit_index': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7},
'high': {0: 1209.75,
1: 1211.0,
2: 1211.25,
3: 1207.25,
4: 1206.25,
5: 1205.75,
6: 1205.5},
'low': {0: 1207.25,
1: 1207.5,
2: 1205.75,
3: 1206.0,
4: 1201.0,
5: 1202.75,
6: 1203.75}}
最简单的方法是使用 pd.concat
和 keys
参数
ti_cols = df.columns[:2]
mae_cols = df.columns[2:]
pd.concat([df[ti_cols], df[mae_cols]], axis=1, keys=['trade_inputs', 'mae_function'])
但是,如果您费尽心思制作了多重索引,则可以将其分配给 columns
属性
df.columns = MI
df
df.index = index
对我有用。