GridSearch 与 Keras 神经网络

GridSearch with Keras Neural Networks

我正在尝试为使用 keras 构建的神经网络执行参数调整。这是我的代码,在导致错误的行上有注释:

from sklearn.cross_validation import StratifiedKFold, cross_val_score
from sklearn import grid_search
from sklearn.metrics import classification_report
import multiprocessing

from keras.models import Sequential
from keras.layers import Dense
from sklearn.preprocessing import LabelEncoder
from keras.utils import np_utils
from keras.wrappers.scikit_learn import KerasClassifier
import numpy as np


def tuning(X_train,Y_train,X_test,Y_test):

  in_size=X_train.shape[1]
  num_cores=multiprocessing.cpu_count()
  model = Sequential()
  model.add(Dense(in_size, input_dim=in_size, init='uniform', activation='relu'))
  model.add(Dense(8, init='uniform', activation='relu'))
  model.add(Dense(1, init='uniform', activation='sigmoid'))
  model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

  batch_size = [10, 20, 40, 60, 80, 100]
  epochs = [10,20]
  param_grid = dict(batch_size=batch_size, nb_epoch=epochs)

  k_model = KerasClassifier(build_fn=model, verbose=0)
  clf = grid_search.GridSearchCV(estimator=k_model, param_grid=param_grid, cv=StratifiedKFold(Y_train, n_folds=10, shuffle=True, random_state=1234),
                   scoring="accuracy", verbose=100, n_jobs=num_cores)

  clf.fit(X_train, Y_train) #ERROR HERE

  print("Best parameters set found on development set:")
  print()
  print(clf.best_params_)
  print()
  print("Grid scores on development set:")
  print()
  for params, mean_score, scores in clf.grid_scores_:
    print("%0.3f (+/-%0.03f) for %r"
        % (mean_score, scores.std() * 2, params))
  print()
  print("Detailed classification report:")
  print()
  print("The model is trained on the full development set.")
  print("The scores are computed on the full evaluation set.")
  print()
  y_true, y_pred = Y_test, clf.predict(X_test)
  print(classification_report(y_true, y_pred))
  print()

这是错误报告:

 clf.fit(X_train, Y_train)
  File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 804, in fit
    return self._fit(X, y, ParameterGrid(self.param_grid))
  File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 553, in _fit
    for parameters in parameter_iterable
  File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 800, in __call__
    while self.dispatch_one_batch(iterator):
  File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 658, in dispatch_one_batch
    self._dispatch(tasks)
  File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 566, in _dispatch
    job = ImmediateComputeBatch(batch)
  File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 180, in __init__
    self.results = batch()
  File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 72, in __call__
    return [func(*args, **kwargs) for func, args, kwargs in self.items]
  File "/usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.py", line 1531, in _fit_and_score
    estimator.fit(X_train, y_train, **fit_params)
  File "/usr/local/lib/python2.7/dist-packages/keras/wrappers/scikit_learn.py", line 135, in fit
    **self.filter_sk_params(self.build_fn.__call__))
TypeError: __call__() takes at least 2 arguments (1 given)

我错过了什么吗?网格搜索与随机森林、svm 和逻辑回归配合得很好。我只有神经网络有问题。

这里的错误表明 build_fn 需要有 2 个参数,如 param_grid 的参数数量所示。

因此您需要显式定义一个新函数并将其用作 build_fn=make_model

def make_model(batch_size, nb_epoch):
    model = Sequential()
    model.add(Dense(in_size, input_dim=in_size, init='uniform', activation='relu'))
    model.add(Dense(8, init='uniform', activation='relu'))
    model.add(Dense(1, init='uniform', activation='sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

还要检查 keras/examples/mnist_sklearn_wrapper.py,其中 GridSearchCV 用于超参数搜索。

我想你可能使用 scikit-learn 0.16 或更早版本。
我昨天 运行 遇到了同样的问题,经过一些解决方法后,我了解到将 scikit-learn 从 0.16 升级到 0.18 可以解决这个问题。

clf.fit(X_train, Y_train) #SHOULD WORK with scikit-learn 0.18   

还有一点 0.18 与 0.16 不同的是 GridSearchCV 不是 sklearn.grid_search 而是 sklearn.model_selection

我希望你现在已经解决了这个问题。

a) 我想问题是您没有在包装函数 tuning() 的末尾返回模型。使用 return model

b) k_model = KerasClassifier(build_fn=model, verbose=0) 我认为应该 build_fn=tuning 根据你如何命名你的函数。

c) 方法的签名 def tuning(X_train,Y_train,X_test,Y_test) 不正确。相反,要传递给函数的参数是那些需要在每次迭代后替换的参数(即您在 param_grid 中指定的超参数)。请改用 def tuning(batch_size, nb_epoch)

希望对您有所帮助!