Adagrad 如何在 Keras 中工作? self.weights 在 Keras 优化器中是什么意思?

How Adagrad works in Keras? What does self.weights mean in Keras Optimizer?

比如Keras的Adagrad的实现是:

class Adagrad(Optimizer):
"""Adagrad optimizer.
It is recommended to leave the parameters of this optimizer
at their default values.
# Arguments
    lr: float >= 0. Learning rate.
    epsilon: float >= 0.
    decay: float >= 0. Learning rate decay over each update.
# References
    - [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
"""

def __init__(self, lr=0.01, epsilon=1e-8, decay=0., **kwargs):
    super(Adagrad, self).__init__(**kwargs)
    self.lr = K.variable(lr)
    self.epsilon = epsilon
    self.decay = K.variable(decay)
    self.initial_decay = decay
    self.iterations = K.variable(0.)

def get_updates(self, params, constraints, loss):
    grads = self.get_gradients(loss, params)
    shapes = [K.get_variable_shape(p) for p in params]
    accumulators = [K.zeros(shape) for shape in shapes]
    self.weights = accumulators
    self.updates = []

    lr = self.lr
    if self.initial_decay > 0:
        lr *= (1. / (1. + self.decay * self.iterations))
        self.updates.append(K.update_add(self.iterations, 1))

    for p, g, a in zip(params, grads, accumulators):
        new_a = a + K.square(g)  # update accumulator
        self.updates.append(K.update(a, new_a))
        new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)
        # apply constraints
        if p in constraints:
            c = constraints[p]
            new_p = c(new_p)
        self.updates.append(K.update(p, new_p))
    return self.updates

而函数 'get_update()' 似乎一步更新。但是累加器应该存储历史信息吗?为什么它在每一步都被初始化为零?如何在整个训练过程中成为一个累加器?

这条线是做什么的?

self.weights = accumulators

似乎 self.weights 再也没有被调用过。

你是对的.. 对于 Keras 中的所有优化器 get_updates() 实现一步更新的张量逻辑。 _make_train_function() here, which is used to create the tensor function by passing the update rule as update= here 中的每个 model.fit() 都会调用此函数一次。此更新规则用于迭代到迭代以更新模型参数和其他参数。

self.weights 优化器 class 是它的内部参数。这不用于训练。它只是用来保持优化器的状态(指向 param/accumulators 张量的指针列表),当调用 model.save 时,它们也会通过调用 get_weights() here and is loaded back when model.load is called by set_weights() here