Python - 避免巨大数据集的内存错误

Python - avoiding memory error with HUGE data set

我有一个连接到 PostGreSQL 数据库的 python 程序。在这个数据库中,我有相当多的数据(大约 12 亿行)。幸运的是,我不必同时分析所有这些行。

那 12 亿行分布在几个 table 上(大约 30)。目前我正在访问一个名为 table_3 的 table,我想在其中访问具有特定“did”值的所有行(因为该列被调用)。

我使用 SQL 命令计算了行数:

SELECT count(*) FROM table_3 WHERE did='356002062376054';

其中 returns 有 1.57 亿行。

我将对所有这些行执行一些“分析”(提取 2 个特定值)并对这些值进行一些计算,然后将它们写入字典,然后将它们保存回 PostGreSQL 在不同的 table.

问题是我正在创建大量列表和字典来管理所有这些我最终 运行 内存不足,即使我使用 Python 3 64 位并且有64 GB 内存。

一些代码:

CONNECTION = psycopg2.connect('<psycopg2 formatted string>')
CURSOR = CONNECTION.cursor()

DID_LIST = ["357139052424715",
            "353224061929963",
            "356002064810514",
            "356002064810183",
            "358188051768472",
            "358188050598029",
            "356002061925067",
            "358188056470108",
            "356002062376054",
            "357460064130045"]

SENSOR_LIST = [1, 2, 3, 4, 5, 6, 7, 8, 9,
               10, 11, 12, 13, 801, 900, 901,
               902, 903, 904, 905, 906, 907,
               908, 909, 910, 911]

for did in did_list:
    table_name = did
    for sensor_id in sensor_list:
        rows = get_data(did, sensor_id)
        list_object = create_standard_list(sensor_id, rows)  # Happens here
        formatted_list = format_table_dictionary(list_object) # Or here
        pushed_rows = write_to_table(table_name, formatted_list) #write_to_table method is omitted as that is not my problem.

def get_data(did, table_id):
    """Getting data from postgresql."""
    table_name = "table_{0}".format(table_id)
    query = """SELECT * FROM {0} WHERE did='{1}'
               ORDER BY timestamp""".format(table_name, did)

    CURSOR.execute(query)
    CONNECTION.commit()
    
    return CURSOR

def create_standard_list(sensor_id, data):
    """Formats DB data to dictionary"""
    list_object = []

    print("Create standard list")
    for row in data: # data is the psycopg2 CURSOR
        row_timestamp = row[2]
        row_data = row[3]

        temp_object = {"sensor_id": sensor_id, "timestamp": row_timestamp,
                       "data": row_data}

        list_object.append(temp_object)

    return list_object


def format_table_dictionary(list_dict):
    """Formats dictionary to simple data
       table_name = (dates, data_count, first row)"""
    print("Formatting dict to DB")
    temp_today = 0
    dict_list = []
    first_row = {}
    count = 1

    for elem in list_dict:
        # convert to seconds
        date = datetime.fromtimestamp(elem['timestamp'] / 1000)
        today = int(date.strftime('%d'))
        if temp_today is not today:
            if not first_row:
                first_row = elem['data']
            first_row_str = str(first_row)
            dict_object = {"sensor_id": elem['sensor_id'],
                           "date": date.strftime('%d/%m-%Y'),
                           "reading_count": count,
                           # size in MB of data
                           "approx_data_size": (count*len(first_row_str)/1000),
                           "time": date.strftime('%H:%M:%S'),
                           "first_row": first_row}

            dict_list.append(dict_object)
            first_row = {}
            temp_today = today
            count = 0
        else:
            count += 1

    return dict_list

我的错误发生在创建代码中标有注释的两个列表中的任何一个时。它代表我的电脑停止响应,并最终将我注销。我 运行宁 windows 10 如果这很重要的话。

我知道我用“create_standard_list”方法创建的第一个列表可以被排除,并且该代码可以是“format_table_dictionary”代码中的运行,从而避免list 在内存中有 157 个 mio 元素,但我认为我将 运行 放入的其他一些 table 也会有类似的问题,而且可能更大,所以我现在考虑优化它, 但我不确定我能做什么?

我想写入文件并没有多大帮助,因为我必须读取该文件,然后再将它放回内存中?

极简示例

我有一个table

---------------------------------------------------------------
|Row 1 | did | timestamp | data | unused value | unused value |
|Row 2 | did | timestamp | data | unused value | unused value |
....
---------------------------------

table = [{ values from above row1 }, { values from above row2},...]

connection = psycopg2.connect(<connection string>)
cursor = connection.cursor()

table = cursor.execute("""SELECT * FROM table_3 WHERE did='356002062376054'
                          ORDER BY timestamp""")

extracted_list = extract(table)
calculated_list = calculate(extracted_list)
... write to db ...

def extract(table):
    """extract all but unused values"""
    new_list = []
    for row in table:
        did = row[0]
        timestamp = row[1]
        data = row[2]

        a_dict = {'did': did, 'timestamp': timestamp, 'data': data}
        new_list.append(a_dict)

    return new_list


def calculate(a_list):
    """perform calculations on values"""
    dict_list = []
    temp_today = 0
    count = 0
    for row in a_list:
        date = datetime.fromtimestamp(row['timestamp'] / 1000) # from ms to sec
        today = int(date.strfime('%d'))
        if temp_today is not today:
            new_dict = {'date': date.strftime('%d/%m-%Y'),
                        'reading_count': count,
                        'time': date.strftime('%H:%M:%S')}
            dict_list.append(new_dict)

    return dict_list
        
        

create_standard_list()format_table_dictionary() 可以构建生成器(yielding 每个项目而不是 returning 完整列表),这将停止将整个列表保存在内存中并且所以应该可以解决您的问题,例如:

def create_standard_list(sensor_id, data):
    for row in data:
        row_timestamp = row[2]
        row_data = row[3]

        temp_object = {"sensor_id": sensor_id, "timestamp": row_timestamp,
                       "data": row_data}
        yield temp_object
       #^ yield each item instead of appending to a list

有关 generators and the yield keyword 的更多信息。

IIUC,您在这里尝试做的是在 Python 代码中模拟 SQL GROUP BY 表达式。这永远不会像直接在数据库中那样快速和高效。 您的示例代码似乎有一些问题,但我将其理解为:您想 对于给定 did 发生的每一天,计算每天的行数。还有,你是 对每组值的一天中的最小(或最大,或中位数,这无关紧要)时间感兴趣,即每天。

让我们建立一个小例子table(在 Oracle 上测试):

create table t1 (id number primary key, created timestamp, did number, other_data varchar2(200));  

insert into t1 values (1, to_timestamp('2017-01-31 17:00:00', 'YYYY-MM-DD HH24:MI:SS'), 9001, 'some text');
insert into t1 values (2, to_timestamp('2017-01-31 19:53:00', 'YYYY-MM-DD HH24:MI:SS'), 9001, 'some more text');
insert into t1 values (3, to_timestamp('2017-02-01 08:10:00', 'YYYY-MM-DD HH24:MI:SS'), 9001, 'another day');
insert into t1 values (4, to_timestamp('2017-02-01 15:55:00', 'YYYY-MM-DD HH24:MI:SS'), 9001, 'another day, rainy afternoon');
insert into t1 values (5, to_timestamp('2017-02-01 15:59:00', 'YYYY-MM-DD HH24:MI:SS'), 9002, 'different did');
insert into t1 values (6, to_timestamp('2017-02-03 01:01:00', 'YYYY-MM-DD HH24:MI:SS'), 9001, 'night shift');

我们有一些行,分布在几天内,9001。 did 9002 也有一个值,我们将 忽视。现在让我们将要写入第二个 table 的行作为简单的 SELECT .. GROUP BY:

select 
    count(*) cnt, 
    to_char(created, 'YYYY-MM-DD') day, 
    min(to_char(created, 'HH24:MI:SS')) min_time 
from t1 
where did = 9001
group by to_char(created, 'YYYY-MM-DD')
;

我们按 created 列(时间戳)的日期对所有行进行分组。我们 select 每组的行数,一天本身,以及 - 只是为了好玩 - 每组的最短时间部分 团体。结果:

cnt day         min_time
2   2017-02-01  08:10:00
1   2017-02-03  01:01:00
2   2017-01-31  17:00:00

现在你有了第二个 table 作为 SELECT。从中创建 table 很简单:

create table t2 as
select
    ... as above
;

HTH!