随机排列二维数组的行组 - NumPy
Shuffle groups of rows of a 2D array - NumPy
假设我有一个 (50, 5) 数组。有没有一种方法可以根据 rows/sequences 数据点的分组对其进行洗牌,即不是洗牌每一行,而是洗牌 5 行?
谢谢
方法 #1: 这是一种根据组大小重塑为 3D
数组的方法,使用从 np.random.permutation
最后重塑回 2D
-
N = 5 # Blocks of N rows
M,n = a.shape[0]//N, a.shape[1]
out = a.reshape(M,-1,n)[np.random.permutation(M)].reshape(-1,n)
样本运行-
In [141]: a
Out[141]:
array([[89, 26, 12],
[97, 60, 96],
[94, 38, 54],
[41, 63, 29],
[88, 62, 48],
[95, 66, 32],
[28, 58, 80],
[26, 35, 89],
[72, 91, 38],
[26, 70, 93]])
In [142]: N = 2 # Blocks of N rows
In [143]: M,n = a.shape[0]//N, a.shape[1]
In [144]: a.reshape(M,-1,n)[np.random.permutation(M)].reshape(-1,n)
Out[144]:
array([[94, 38, 54],
[41, 63, 29],
[28, 58, 80],
[26, 35, 89],
[89, 26, 12],
[97, 60, 96],
[72, 91, 38],
[26, 70, 93],
[88, 62, 48],
[95, 66, 32]])
方法 #2 : 也可以简单地使用 np.random.shuffle
进行 in-situ 更改 -
np.random.shuffle(a.reshape(M,-1,n))
样本运行-
In [156]: a
Out[156]:
array([[15, 12, 14],
[55, 39, 35],
[73, 78, 36],
[54, 52, 32],
[83, 34, 91],
[42, 11, 98],
[27, 65, 47],
[78, 75, 82],
[33, 52, 93],
[87, 51, 80]])
In [157]: N = 2 # Blocks of N rows
In [158]: M,n = a.shape[0]//N, a.shape[1]
In [159]: np.random.shuffle(a.reshape(M,-1,n))
In [160]: a
Out[160]:
array([[15, 12, 14],
[55, 39, 35],
[27, 65, 47],
[78, 75, 82],
[73, 78, 36],
[54, 52, 32],
[33, 52, 93],
[87, 51, 80],
[83, 34, 91],
[42, 11, 98]])
假设我有一个 (50, 5) 数组。有没有一种方法可以根据 rows/sequences 数据点的分组对其进行洗牌,即不是洗牌每一行,而是洗牌 5 行?
谢谢
方法 #1: 这是一种根据组大小重塑为 3D
数组的方法,使用从 np.random.permutation
最后重塑回 2D
-
N = 5 # Blocks of N rows
M,n = a.shape[0]//N, a.shape[1]
out = a.reshape(M,-1,n)[np.random.permutation(M)].reshape(-1,n)
样本运行-
In [141]: a
Out[141]:
array([[89, 26, 12],
[97, 60, 96],
[94, 38, 54],
[41, 63, 29],
[88, 62, 48],
[95, 66, 32],
[28, 58, 80],
[26, 35, 89],
[72, 91, 38],
[26, 70, 93]])
In [142]: N = 2 # Blocks of N rows
In [143]: M,n = a.shape[0]//N, a.shape[1]
In [144]: a.reshape(M,-1,n)[np.random.permutation(M)].reshape(-1,n)
Out[144]:
array([[94, 38, 54],
[41, 63, 29],
[28, 58, 80],
[26, 35, 89],
[89, 26, 12],
[97, 60, 96],
[72, 91, 38],
[26, 70, 93],
[88, 62, 48],
[95, 66, 32]])
方法 #2 : 也可以简单地使用 np.random.shuffle
进行 in-situ 更改 -
np.random.shuffle(a.reshape(M,-1,n))
样本运行-
In [156]: a
Out[156]:
array([[15, 12, 14],
[55, 39, 35],
[73, 78, 36],
[54, 52, 32],
[83, 34, 91],
[42, 11, 98],
[27, 65, 47],
[78, 75, 82],
[33, 52, 93],
[87, 51, 80]])
In [157]: N = 2 # Blocks of N rows
In [158]: M,n = a.shape[0]//N, a.shape[1]
In [159]: np.random.shuffle(a.reshape(M,-1,n))
In [160]: a
Out[160]:
array([[15, 12, 14],
[55, 39, 35],
[27, 65, 47],
[78, 75, 82],
[73, 78, 36],
[54, 52, 32],
[33, 52, 93],
[87, 51, 80],
[83, 34, 91],
[42, 11, 98]])