'numpy.ndarray' 在 jupyter notebook 中的第 2 个 运行 之后无法调用对象
'numpy.ndarray' object is not callable after 2nd run in jupyter notebook
非常简单的代码。一切正常。我把hls_binary和gradx放到了comb_binary.
的方法中
image = mpimg.imread('test_images/test4.jpg')
comb_binary = comb_binary(image)
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(28,16))
ax1.imshow(image2)
ax1.set_title('A', fontsize=20)
ax2.imshow(comb_binary, cmap = 'gray')
ax2.set_title('B', fontsize=20)
但是,如果我在笔记本中重新运行那个单元格,我会运行进入这个错误:
'numpy.ndarray' object is not callable
第一次。有用:
运行 再次显示该单元格:
以下是所有方法的定义以防万一:
def abs_sobel_thresh(img, orient, sobel_kernel, thresh):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if orient == 'x':
sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
else:
sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
abs_sobel = np.absolute(sobel)
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
grad_binary = np.zeros_like(scaled_sobel)
grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return grad_binary
def hls_select(img, thresh):
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
hls_binary = np.zeros_like(s_channel)
hls_binary[(s_channel > thresh[0]) & (s_channel <= thresh[1])] = 1
return hls_binary
def comb_binary(image):
gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=9, thresh=(20, 100))
hls_binary = hls_select(image, thresh=(170, 255))
combined_binary_final = np.zeros_like(gradx)
combined_binary_final[(hls_binary == 1 ) | (gradx == 1)] = 1
return combined_binary_final
每次你在 jupyter 中评估一个单元格时,它都会在以前的命令构建的环境中运行这些命令。所以,当你有这样一行时:
comb_binary = comb_binary(image)
第一次一切都好。您只需用它的结果替换 comb_binary
(函数)。现在 comb_binary
是一个 numpy 数组……但是,如果您尝试再次执行该单元格,comb_binary
现在是一个 numpy 数组——而不是函数。就像你写的一样:
comb_binary = comb_binary(image)
comb_binary = comb_binary(image)
而且您不会期望 在大多数情况下都能成功 ;-)。
非常简单的代码。一切正常。我把hls_binary和gradx放到了comb_binary.
的方法中image = mpimg.imread('test_images/test4.jpg')
comb_binary = comb_binary(image)
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(28,16))
ax1.imshow(image2)
ax1.set_title('A', fontsize=20)
ax2.imshow(comb_binary, cmap = 'gray')
ax2.set_title('B', fontsize=20)
但是,如果我在笔记本中重新运行那个单元格,我会运行进入这个错误:
'numpy.ndarray' object is not callable
第一次。有用:
运行 再次显示该单元格:
以下是所有方法的定义以防万一:
def abs_sobel_thresh(img, orient, sobel_kernel, thresh):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if orient == 'x':
sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
else:
sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
abs_sobel = np.absolute(sobel)
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
grad_binary = np.zeros_like(scaled_sobel)
grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return grad_binary
def hls_select(img, thresh):
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
hls_binary = np.zeros_like(s_channel)
hls_binary[(s_channel > thresh[0]) & (s_channel <= thresh[1])] = 1
return hls_binary
def comb_binary(image):
gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=9, thresh=(20, 100))
hls_binary = hls_select(image, thresh=(170, 255))
combined_binary_final = np.zeros_like(gradx)
combined_binary_final[(hls_binary == 1 ) | (gradx == 1)] = 1
return combined_binary_final
每次你在 jupyter 中评估一个单元格时,它都会在以前的命令构建的环境中运行这些命令。所以,当你有这样一行时:
comb_binary = comb_binary(image)
第一次一切都好。您只需用它的结果替换 comb_binary
(函数)。现在 comb_binary
是一个 numpy 数组……但是,如果您尝试再次执行该单元格,comb_binary
现在是一个 numpy 数组——而不是函数。就像你写的一样:
comb_binary = comb_binary(image)
comb_binary = comb_binary(image)
而且您不会期望 在大多数情况下都能成功 ;-)。