在 sklearn 中使用带有自定义 类 的管道
Using Pipeline with custom classes in sklearn
我在 predict
管道流内部遇到问题,每个管道步骤自定义 类。
class MyFeatureSelector():
def __init__(self, features=5, method='pca'):
self.features = features
self.method = method
def fit(self, X, Y):
return self
def transform(self, X, Y=None):
try:
if self.features < X.shape[1]:
if self.method == 'pca':
selector = PCA(n_components=self.features)
elif self.method == 'rfe':
selector = RFE(estimator=LinearRegression(n_jobs=-1),
n_features_to_select=self.features,
step=1)
selector.fit(X, Y)
return selector.transform(X)
except Exception as err:
print('MyFeatureSelector.transform(): {}'.format(err))
return X
def fit_transform(self, X, Y=None):
self.fit(X, Y)
return self.transform(X, Y)
model = Pipeline([
("DATA_CLEANER", MyDataCleaner(demo='', mode='strict')),
("DATA_ENCODING", MyEncoder(encoder_name='code')),
("FEATURE_SELECTION", MyFeatureSelector(features=15, method='rfe')),
("HUBER_MODELLING", HuberRegressor())
])
所以,上面的代码在这里工作得很好:
model.fit(X, _Y)
但是我这里有错误
prediction = model.predict(XT)
ERROR: shapes (672,107) and (15,) not aligned: 107 (dim 1) != 15 (dim
0)
调试在此处显示该问题:selector.fit(X, Y)
因为 MyFeatureSelector
的新实例是在 predict()
步骤中创建的,而 Y
当时不存在。
我哪里错了?
下面发布的工作版本:
class MyFeatureSelector():
def __init__(self, features=5, method='pca'):
self.features = features
self.method = method
self.selector = None
self.init_selector()
def init_selector():
if self.method == 'pca':
self.selector = PCA(n_components=self.features)
elif self.method == 'rfe':
self.selector = RFE(estimator=LinearRegression(n_jobs=-1),
n_features_to_select=self.features,
step=1)
def fit(self, X, Y):
return self
def transform(self, X, Y=None):
try:
if self.features < X.shape[1]:
if Y is not None:
self.selector.fit(X, Y)
return selector.transform(X)
except Exception as err:
print('MyFeatureSelector.transform(): {}'.format(err))
return X
def fit_transform(self, X, Y=None):
self.fit(X, Y)
return self.transform(X, Y)
我在 predict
管道流内部遇到问题,每个管道步骤自定义 类。
class MyFeatureSelector():
def __init__(self, features=5, method='pca'):
self.features = features
self.method = method
def fit(self, X, Y):
return self
def transform(self, X, Y=None):
try:
if self.features < X.shape[1]:
if self.method == 'pca':
selector = PCA(n_components=self.features)
elif self.method == 'rfe':
selector = RFE(estimator=LinearRegression(n_jobs=-1),
n_features_to_select=self.features,
step=1)
selector.fit(X, Y)
return selector.transform(X)
except Exception as err:
print('MyFeatureSelector.transform(): {}'.format(err))
return X
def fit_transform(self, X, Y=None):
self.fit(X, Y)
return self.transform(X, Y)
model = Pipeline([
("DATA_CLEANER", MyDataCleaner(demo='', mode='strict')),
("DATA_ENCODING", MyEncoder(encoder_name='code')),
("FEATURE_SELECTION", MyFeatureSelector(features=15, method='rfe')),
("HUBER_MODELLING", HuberRegressor())
])
所以,上面的代码在这里工作得很好:
model.fit(X, _Y)
但是我这里有错误
prediction = model.predict(XT)
ERROR: shapes (672,107) and (15,) not aligned: 107 (dim 1) != 15 (dim 0)
调试在此处显示该问题:selector.fit(X, Y)
因为 MyFeatureSelector
的新实例是在 predict()
步骤中创建的,而 Y
当时不存在。
我哪里错了?
下面发布的工作版本:
class MyFeatureSelector():
def __init__(self, features=5, method='pca'):
self.features = features
self.method = method
self.selector = None
self.init_selector()
def init_selector():
if self.method == 'pca':
self.selector = PCA(n_components=self.features)
elif self.method == 'rfe':
self.selector = RFE(estimator=LinearRegression(n_jobs=-1),
n_features_to_select=self.features,
step=1)
def fit(self, X, Y):
return self
def transform(self, X, Y=None):
try:
if self.features < X.shape[1]:
if Y is not None:
self.selector.fit(X, Y)
return selector.transform(X)
except Exception as err:
print('MyFeatureSelector.transform(): {}'.format(err))
return X
def fit_transform(self, X, Y=None):
self.fit(X, Y)
return self.transform(X, Y)