ipywidgets:使用交互时避免闪烁
ipywidgets: avoid flickering when using interact
我分别根据随机正态分布、伽马分布、指数分布和均匀分布制作了一个包含直方图四个子图的图形。我使用 matplotlib 和 Jupyter notebook 制作了它。它是一个通过 ipywidgets lib 的交互式图形。特别是,有四个滑动条控制每个直方图上的样本大小并相应地更新它们。但是,在更新直方图时,它会令人讨厌地闪烁。有什么办法可以避免这种情况吗?谢谢
现在代码 运行 在 jupyter notebook 上:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib notebook
from ipywidgets import *
n = 1000
x1 = np.random.normal(-2.5, 1, n)
x2 = np.random.gamma(2, 1.5, n)
x3 = np.random.exponential(2, n)+7
x4 = np.random.uniform(14,20, n)
x = [x1, x2, x3, x4]
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,7))
axs = [ax1,ax2,ax3,ax4]
titles = ['x1\nNormal', 'x2\nGamma', 'x3\nExponential', 'x4\nUniform']
subplots_axes = [[-7,2,0,250], [0,4.5,0,250], [7,25,0,250], [14,20,0,250]]
bins = [np.arange(-6, 6, 0.5),
np.arange(0, 10, 0.5),
np.arange(7, 17, 0.5),
np.arange(14, 24, 0.5)]
fig.subplots_adjust(hspace=0.5)
def plt_dist(s, sample):
axs[s].hist(x[s][:sample], bins=bins[s], linewidth=0, color='#1F77B4')
axs[s].axis(subplots_axes[s])
axs[s].set_title('{}'.format(titles[s]))
axs[s].set_ylabel('Frequency')
axs[s].set_xlabel('Value')
axs[s].annotate('n = {}'.format(sample), xycoords='axes fraction', xy = [0.8,0.9])
display(fig)
for s in range(0,4):
sld_bar = interact(plt_dist, s = fixed(s), sample = widgets.IntSlider(min=100,max=1000+45,step=1,value=100))
不太清楚 display(fig)
会做什么或需要它做什么。
对我来说,删除那条线并清除 plt_hist
函数开头的坐标轴 (axs[s].clear()
) 效果很好,"flickering" 不再存在。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib notebook
from ipywidgets import *
n = 1000
x1 = np.random.normal(-2.5, 1, n)
x2 = np.random.gamma(2, 1.5, n)
x3 = np.random.exponential(2, n)+7
x4 = np.random.uniform(14,20, n)
x = [x1, x2, x3, x4]
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,7))
axs = [ax1,ax2,ax3,ax4]
titles = ['x1\nNormal', 'x2\nGamma', 'x3\nExponential', 'x4\nUniform']
subplots_axes = [[-7,2,0,250], [0,4.5,0,250], [7,25,0,250], [14,20,0,250]]
bins = [np.arange(-6, 6, 0.5),
np.arange(0, 10, 0.5),
np.arange(7, 17, 0.5),
np.arange(14, 24, 0.5)]
fig.subplots_adjust(hspace=0.5)
def plt_dist(s, sample):
axs[s].clear() # <-- clear axes
axs[s].hist(x[s][:sample], bins=bins[s], linewidth=0, color='#1F77B4')
axs[s].axis(subplots_axes[s])
axs[s].set_title('{}'.format(titles[s]))
axs[s].set_ylabel('Frequency')
axs[s].set_xlabel('Value')
axs[s].annotate('n = {}'.format(sample), xycoords='axes fraction', xy = [0.8,0.9])
#display(fig) <--- delete this
for s in range(0,4):
sld_bar = interact(plt_dist, s = fixed(s),
sample = widgets.IntSlider(min=100,max=1000+45,step=1,value=100))
万一其他人遇到此问题,在您的交互功能中使用 print 语句也会导致闪烁。
fig, ax = plt.subplots()
@widgets.interact
def run(
a = 1.2,
):
ax.clear()
print(1) # Comment this line to stop flickering
ax.plot([1,2,3])
display(fig)
我分别根据随机正态分布、伽马分布、指数分布和均匀分布制作了一个包含直方图四个子图的图形。我使用 matplotlib 和 Jupyter notebook 制作了它。它是一个通过 ipywidgets lib 的交互式图形。特别是,有四个滑动条控制每个直方图上的样本大小并相应地更新它们。但是,在更新直方图时,它会令人讨厌地闪烁。有什么办法可以避免这种情况吗?谢谢
现在代码 运行 在 jupyter notebook 上:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib notebook
from ipywidgets import *
n = 1000
x1 = np.random.normal(-2.5, 1, n)
x2 = np.random.gamma(2, 1.5, n)
x3 = np.random.exponential(2, n)+7
x4 = np.random.uniform(14,20, n)
x = [x1, x2, x3, x4]
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,7))
axs = [ax1,ax2,ax3,ax4]
titles = ['x1\nNormal', 'x2\nGamma', 'x3\nExponential', 'x4\nUniform']
subplots_axes = [[-7,2,0,250], [0,4.5,0,250], [7,25,0,250], [14,20,0,250]]
bins = [np.arange(-6, 6, 0.5),
np.arange(0, 10, 0.5),
np.arange(7, 17, 0.5),
np.arange(14, 24, 0.5)]
fig.subplots_adjust(hspace=0.5)
def plt_dist(s, sample):
axs[s].hist(x[s][:sample], bins=bins[s], linewidth=0, color='#1F77B4')
axs[s].axis(subplots_axes[s])
axs[s].set_title('{}'.format(titles[s]))
axs[s].set_ylabel('Frequency')
axs[s].set_xlabel('Value')
axs[s].annotate('n = {}'.format(sample), xycoords='axes fraction', xy = [0.8,0.9])
display(fig)
for s in range(0,4):
sld_bar = interact(plt_dist, s = fixed(s), sample = widgets.IntSlider(min=100,max=1000+45,step=1,value=100))
不太清楚 display(fig)
会做什么或需要它做什么。
对我来说,删除那条线并清除 plt_hist
函数开头的坐标轴 (axs[s].clear()
) 效果很好,"flickering" 不再存在。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib notebook
from ipywidgets import *
n = 1000
x1 = np.random.normal(-2.5, 1, n)
x2 = np.random.gamma(2, 1.5, n)
x3 = np.random.exponential(2, n)+7
x4 = np.random.uniform(14,20, n)
x = [x1, x2, x3, x4]
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,7))
axs = [ax1,ax2,ax3,ax4]
titles = ['x1\nNormal', 'x2\nGamma', 'x3\nExponential', 'x4\nUniform']
subplots_axes = [[-7,2,0,250], [0,4.5,0,250], [7,25,0,250], [14,20,0,250]]
bins = [np.arange(-6, 6, 0.5),
np.arange(0, 10, 0.5),
np.arange(7, 17, 0.5),
np.arange(14, 24, 0.5)]
fig.subplots_adjust(hspace=0.5)
def plt_dist(s, sample):
axs[s].clear() # <-- clear axes
axs[s].hist(x[s][:sample], bins=bins[s], linewidth=0, color='#1F77B4')
axs[s].axis(subplots_axes[s])
axs[s].set_title('{}'.format(titles[s]))
axs[s].set_ylabel('Frequency')
axs[s].set_xlabel('Value')
axs[s].annotate('n = {}'.format(sample), xycoords='axes fraction', xy = [0.8,0.9])
#display(fig) <--- delete this
for s in range(0,4):
sld_bar = interact(plt_dist, s = fixed(s),
sample = widgets.IntSlider(min=100,max=1000+45,step=1,value=100))
万一其他人遇到此问题,在您的交互功能中使用 print 语句也会导致闪烁。
fig, ax = plt.subplots()
@widgets.interact
def run(
a = 1.2,
):
ax.clear()
print(1) # Comment this line to stop flickering
ax.plot([1,2,3])
display(fig)