阶乘循环变为 0
Factorial loop becomes 0
I 运行 一个简单的程序,使用编译语言计算前几个自然数的阶乘,使用两个简单的循环,一个用于跟踪的外部循环是我们正在计算阶乘的数字和一个内部的,通过将每个自然数从 1 乘以到数字本身来计算阶乘。
该程序适用于第一个自然数,然后大约从第 13 个值开始计算的阶乘显然是错误的。这是由于在现代计算机中实现的整数运算,我不明白为什么会出现负值。
但我不明白的是为什么,这是我在不同计算机上测试过的东西,在计算出非常少量的阶乘后,它总是达到数字零。当然,如果第n个阶乘被评估为0,第(n+1)个阶乘也会被评估为0,依此类推,但为什么数字0总是出现在极少数之后阶乘计算?
编辑:您可能想知道为什么我使用了两个不同的周期而不是一个...我这样做是为了强制计算机从一开始就重新计算每个阶乘,只是为了测试阶乘确实变成了这个事实总是 0,这不是偶然的。
这是我的输出:
从 34! 开始,所有阶乘都可以被 2^32 整除。因此,当您的计算机程序计算结果 modulo 2^32(虽然您没有说明您使用的是哪种编程语言,但很有可能),那么结果始终为 0.
这是一个计算阶乘的程序 mod 2^32 in Python:
def sint(r):
r %= (1 << 32)
return r if r < (1 << 31) else r - (1 << 32)
r = 1
for i in xrange(1, 40):
r *= i
print '%d! = %d mod 2^32' % (i, sint(r))
给出的输出与您自己程序的输出一致:
1! = 1 mod 2^32
2! = 2 mod 2^32
3! = 6 mod 2^32
4! = 24 mod 2^32
5! = 120 mod 2^32
6! = 720 mod 2^32
7! = 5040 mod 2^32
8! = 40320 mod 2^32
9! = 362880 mod 2^32
10! = 3628800 mod 2^32
11! = 39916800 mod 2^32
12! = 479001600 mod 2^32
13! = 1932053504 mod 2^32
14! = 1278945280 mod 2^32
15! = 2004310016 mod 2^32
16! = 2004189184 mod 2^32
17! = -288522240 mod 2^32
18! = -898433024 mod 2^32
19! = 109641728 mod 2^32
20! = -2102132736 mod 2^32
21! = -1195114496 mod 2^32
22! = -522715136 mod 2^32
23! = 862453760 mod 2^32
24! = -775946240 mod 2^32
25! = 2076180480 mod 2^32
26! = -1853882368 mod 2^32
27! = 1484783616 mod 2^32
28! = -1375731712 mod 2^32
29! = -1241513984 mod 2^32
30! = 1409286144 mod 2^32
31! = 738197504 mod 2^32
32! = -2147483648 mod 2^32
33! = -2147483648 mod 2^32
34! = 0 mod 2^32
35! = 0 mod 2^32
36! = 0 mod 2^32
37! = 0 mod 2^32
38! = 0 mod 2^32
39! = 0 mod 2^32
这里是 table 这个阶乘范围的精确值,显示了每个包含多少 2 的幂:
1! = 1. Divisible by 2^0
2! = 2. Divisible by 2^1
3! = 6. Divisible by 2^1
4! = 24. Divisible by 2^3
5! = 120. Divisible by 2^3
6! = 720. Divisible by 2^4
7! = 5040. Divisible by 2^4
8! = 40320. Divisible by 2^7
9! = 362880. Divisible by 2^7
10! = 3628800. Divisible by 2^8
11! = 39916800. Divisible by 2^8
12! = 479001600. Divisible by 2^10
13! = 6227020800. Divisible by 2^10
14! = 87178291200. Divisible by 2^11
15! = 1307674368000. Divisible by 2^11
16! = 20922789888000. Divisible by 2^15
17! = 355687428096000. Divisible by 2^15
18! = 6402373705728000. Divisible by 2^16
19! = 121645100408832000. Divisible by 2^16
20! = 2432902008176640000. Divisible by 2^18
21! = 51090942171709440000. Divisible by 2^18
22! = 1124000727777607680000. Divisible by 2^19
23! = 25852016738884976640000. Divisible by 2^19
24! = 620448401733239439360000. Divisible by 2^22
25! = 15511210043330985984000000. Divisible by 2^22
26! = 403291461126605635584000000. Divisible by 2^23
27! = 10888869450418352160768000000. Divisible by 2^23
28! = 304888344611713860501504000000. Divisible by 2^25
29! = 8841761993739701954543616000000. Divisible by 2^25
30! = 265252859812191058636308480000000. Divisible by 2^26
31! = 8222838654177922817725562880000000. Divisible by 2^26
32! = 263130836933693530167218012160000000. Divisible by 2^31
33! = 8683317618811886495518194401280000000. Divisible by 2^31
34! = 295232799039604140847618609643520000000. Divisible by 2^32
35! = 10333147966386144929666651337523200000000. Divisible by 2^32
36! = 371993326789901217467999448150835200000000. Divisible by 2^34
37! = 13763753091226345046315979581580902400000000. Divisible by 2^34
38! = 523022617466601111760007224100074291200000000. Divisible by 2^35
39! = 20397882081197443358640281739902897356800000000. Divisible by 2^35
每次乘法都从右边附加零位,直到在某些迭代中最左边的位由于溢出而被丢弃。
实际效果:
int i, x=1;
for (i=1; i <=50; i++) {
x *= i;
for (int i = 31; i >= 0; --i) {
printf("%i",(x >> i) & 1);
}
printf("\n");
}
输出位:
00000000000000000000000000000001
00000000000000000000000000000010
00000000000000000000000000000110
00000000000000000000000000011000
00000000000000000000000001111000
00000000000000000000001011010000
00000000000000000001001110110000
00000000000000001001110110000000
00000000000001011000100110000000
00000000001101110101111100000000
00000010011000010001010100000000
00011100100011001111110000000000
01110011001010001100110000000000
01001100001110110010100000000000
01110111011101110101100000000000
01110111011101011000000000000000
11101110110011011000000000000000
11001010011100110000000000000000
00000110100010010000000000000000
10000010101101000000000000000000
10111000110001000000000000000000
11100000110110000000000000000000
00110011100000000000000000000000
11010000000000000000000000000000
10000000000000000000000000000000
00000000000000000000000000000000
请注意,在我们得到零之前 - 我们得到 INT_MIN。附加另一个零位 - 丢弃符号位,因此从 INT_MIN 我们得到纯零。
I 运行 一个简单的程序,使用编译语言计算前几个自然数的阶乘,使用两个简单的循环,一个用于跟踪的外部循环是我们正在计算阶乘的数字和一个内部的,通过将每个自然数从 1 乘以到数字本身来计算阶乘。 该程序适用于第一个自然数,然后大约从第 13 个值开始计算的阶乘显然是错误的。这是由于在现代计算机中实现的整数运算,我不明白为什么会出现负值。 但我不明白的是为什么,这是我在不同计算机上测试过的东西,在计算出非常少量的阶乘后,它总是达到数字零。当然,如果第n个阶乘被评估为0,第(n+1)个阶乘也会被评估为0,依此类推,但为什么数字0总是出现在极少数之后阶乘计算?
编辑:您可能想知道为什么我使用了两个不同的周期而不是一个...我这样做是为了强制计算机从一开始就重新计算每个阶乘,只是为了测试阶乘确实变成了这个事实总是 0,这不是偶然的。
这是我的输出:
从 34! 开始,所有阶乘都可以被 2^32 整除。因此,当您的计算机程序计算结果 modulo 2^32(虽然您没有说明您使用的是哪种编程语言,但很有可能),那么结果始终为 0.
这是一个计算阶乘的程序 mod 2^32 in Python:
def sint(r):
r %= (1 << 32)
return r if r < (1 << 31) else r - (1 << 32)
r = 1
for i in xrange(1, 40):
r *= i
print '%d! = %d mod 2^32' % (i, sint(r))
给出的输出与您自己程序的输出一致:
1! = 1 mod 2^32
2! = 2 mod 2^32
3! = 6 mod 2^32
4! = 24 mod 2^32
5! = 120 mod 2^32
6! = 720 mod 2^32
7! = 5040 mod 2^32
8! = 40320 mod 2^32
9! = 362880 mod 2^32
10! = 3628800 mod 2^32
11! = 39916800 mod 2^32
12! = 479001600 mod 2^32
13! = 1932053504 mod 2^32
14! = 1278945280 mod 2^32
15! = 2004310016 mod 2^32
16! = 2004189184 mod 2^32
17! = -288522240 mod 2^32
18! = -898433024 mod 2^32
19! = 109641728 mod 2^32
20! = -2102132736 mod 2^32
21! = -1195114496 mod 2^32
22! = -522715136 mod 2^32
23! = 862453760 mod 2^32
24! = -775946240 mod 2^32
25! = 2076180480 mod 2^32
26! = -1853882368 mod 2^32
27! = 1484783616 mod 2^32
28! = -1375731712 mod 2^32
29! = -1241513984 mod 2^32
30! = 1409286144 mod 2^32
31! = 738197504 mod 2^32
32! = -2147483648 mod 2^32
33! = -2147483648 mod 2^32
34! = 0 mod 2^32
35! = 0 mod 2^32
36! = 0 mod 2^32
37! = 0 mod 2^32
38! = 0 mod 2^32
39! = 0 mod 2^32
这里是 table 这个阶乘范围的精确值,显示了每个包含多少 2 的幂:
1! = 1. Divisible by 2^0
2! = 2. Divisible by 2^1
3! = 6. Divisible by 2^1
4! = 24. Divisible by 2^3
5! = 120. Divisible by 2^3
6! = 720. Divisible by 2^4
7! = 5040. Divisible by 2^4
8! = 40320. Divisible by 2^7
9! = 362880. Divisible by 2^7
10! = 3628800. Divisible by 2^8
11! = 39916800. Divisible by 2^8
12! = 479001600. Divisible by 2^10
13! = 6227020800. Divisible by 2^10
14! = 87178291200. Divisible by 2^11
15! = 1307674368000. Divisible by 2^11
16! = 20922789888000. Divisible by 2^15
17! = 355687428096000. Divisible by 2^15
18! = 6402373705728000. Divisible by 2^16
19! = 121645100408832000. Divisible by 2^16
20! = 2432902008176640000. Divisible by 2^18
21! = 51090942171709440000. Divisible by 2^18
22! = 1124000727777607680000. Divisible by 2^19
23! = 25852016738884976640000. Divisible by 2^19
24! = 620448401733239439360000. Divisible by 2^22
25! = 15511210043330985984000000. Divisible by 2^22
26! = 403291461126605635584000000. Divisible by 2^23
27! = 10888869450418352160768000000. Divisible by 2^23
28! = 304888344611713860501504000000. Divisible by 2^25
29! = 8841761993739701954543616000000. Divisible by 2^25
30! = 265252859812191058636308480000000. Divisible by 2^26
31! = 8222838654177922817725562880000000. Divisible by 2^26
32! = 263130836933693530167218012160000000. Divisible by 2^31
33! = 8683317618811886495518194401280000000. Divisible by 2^31
34! = 295232799039604140847618609643520000000. Divisible by 2^32
35! = 10333147966386144929666651337523200000000. Divisible by 2^32
36! = 371993326789901217467999448150835200000000. Divisible by 2^34
37! = 13763753091226345046315979581580902400000000. Divisible by 2^34
38! = 523022617466601111760007224100074291200000000. Divisible by 2^35
39! = 20397882081197443358640281739902897356800000000. Divisible by 2^35
每次乘法都从右边附加零位,直到在某些迭代中最左边的位由于溢出而被丢弃。 实际效果:
int i, x=1;
for (i=1; i <=50; i++) {
x *= i;
for (int i = 31; i >= 0; --i) {
printf("%i",(x >> i) & 1);
}
printf("\n");
}
输出位:
00000000000000000000000000000001 00000000000000000000000000000010 00000000000000000000000000000110 00000000000000000000000000011000 00000000000000000000000001111000 00000000000000000000001011010000 00000000000000000001001110110000 00000000000000001001110110000000 00000000000001011000100110000000 00000000001101110101111100000000 00000010011000010001010100000000 00011100100011001111110000000000 01110011001010001100110000000000 01001100001110110010100000000000 01110111011101110101100000000000 01110111011101011000000000000000 11101110110011011000000000000000 11001010011100110000000000000000 00000110100010010000000000000000 10000010101101000000000000000000 10111000110001000000000000000000 11100000110110000000000000000000 00110011100000000000000000000000 11010000000000000000000000000000 10000000000000000000000000000000 00000000000000000000000000000000
请注意,在我们得到零之前 - 我们得到 INT_MIN。附加另一个零位 - 丢弃符号位,因此从 INT_MIN 我们得到纯零。