在 Tensorboard 中绘制一个简单的图

Getting a simple plot in Tensorboard

我想在 tensorboard 上画一个简单的图,就像他们在主页上有的那样:

为了理解这是如何工作的,我写了以下内容:

    import tensorflow as tf
import numpy as np


x = tf.placeholder('float',name='X')
y=  tf.placeholder('float',name='y')
addition = tf.add(x,y)


with tf.Session() as sess:

    for i in range(100):
        var1=  np.random.rand()
        var2=  np.random.rand()
        print(var1,var2)
        tf.summary.scalar('addition',sess.run(addition, feed_dict={x:var1,y:var2}))               
        writer = tf.summary.FileWriter('Graphs',sess.graph)

虽然我可以看到图表,但看不到任何标量值。任何人都可以向我解释我在这里做错了什么吗? PS:我有 运行 所有官方示例,它们都可以正常工作,但我需要理解这个示例才能使用它。 谢谢你的帮助 !

更新

在 运行 @dv3 代码之后程序崩溃了。这是我得到的:

InvalidArgumentError: You must feed a value for placeholder tensor 'input/x-input' with dtype float
     [[Node: input/x-input = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

During handling of the above exception, another exception occurred:

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-5-5cbd77e71936> in <module>()
     14         var2=  np.random.rand()
     15         print(var1,var2)
---> 16         add, s_ = sess.run([addition, summary_op], feed_dict={x:var1,y:var2})
     17         writer.add_summary(s_, i)

所以马上,我想建议阅读 this。它更详细地介绍了什么是会话。

关于代码及其不产生结果的原因:您没有初始化变量。你可以这样做:sess.run(tf.global_variables_initializer())。所以你的代码将是:

import tensorflow as tf
import numpy as np

x = tf.placeholder('float',name='X')
y=  tf.placeholder('float',name='y')
addition = tf.add(x,y)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(100):
        var1=  np.random.rand()
        var2=  np.random.rand()
        print(var1,var2)
        tf.summary.scalar('addition',sess.run(addition, feed_dict={x:var1,y:var2}))               
        writer = tf.summary.FileWriter('Graphs',sess.graph)

我不会将 sess.run 嵌入到 summary.scalar 调用中,但对于这个简单的示例,您会得到一些结果。

编辑: 经过测试,这确实有效:

import tensorflow as tf
import numpy as np

x = tf.placeholder('float',name='X')
y=  tf.placeholder('float',name='y')
addition = tf.add(x,y, name='add')
tf.summary.scalar('addition', addition)
summary_op = tf.summary.merge_all()     
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    writer = tf.summary.FileWriter('Graphs',sess.graph)
    for i in range(100):
        var1=  np.random.rand()
        var2=  np.random.rand()
        print(var1,var2)
        add, s_ = sess.run([addition, summary_op], feed_dict={x:var1,y:var2})
        writer.add_summary(s_, i)

输出: