计算数据框中列表中的出现次数

Counting Occurrences Within a List Within a Dataframe

我有一个包含文章列表的熊猫数据框;出口,发布日期,link 等。此数据框中的一列是关键字列表。例如,在关键字列中,每个单元格都包含一个列表,如 [drop, right, states, laws]。

我的最终目标是统计每个唯一单词每天出现的次数。我面临的挑战是将关键字从列表中分离出来,然后将它们与它们出现的日期相匹配。 ...假设这是最合乎逻辑的第一步。

目前我在下面的代码中有一个解决方案,但是我是 python 的新手,在思考这些事情时我仍然以 Excel 的心态思考。下面的代码有效,但速度很慢。有快速的方法吗?

# Create a list of the keywords for articles in the last 30 days to determine their quantity
keyword_list = stories_full_recent_df['Keywords'].tolist()
keyword_list = [item for sublist in keyword_list for item in sublist]

# Create a blank dataframe and new iterator to write the keyword appearances to
wordtrends_df = pd.DataFrame(columns=['Captured_Date', 'Brand' , 'Coverage' ,'Keyword'])
r = 0

print("Creating table on keywords: {:,}".format(len(keyword_list)))
print(time.strftime("%H:%M:%S"))
# Write the keywords out into their own rows with the dates and origins in which they occur
while r <= len(keyword_list):
    for i in stories_full_recent_df.index:
        words = stories_full_recent_df.loc[i]['Keywords']
        for word in words:
            wordtrends_df.loc[r] = [stories_full_recent_df.loc[i]['Captured_Date'], stories_full_recent_df.loc[i]['Brand'],
                                    stories_full_recent_df.loc[i]['Coverage'], word]
        r += 1

print(time.strftime("%H:%M:%S"))
print("Keyword compilation complete.")

一旦我将每个单词都放在自己的行中,我就可以简单地使用 .groupby() 来计算每天出现的次数。

# Group and count the keywords and days to find the day with the least of each word
test_min = wordtrends_df.groupby(('Keyword', 'Captured_Date'), as_index=False).count().sort_values(by=['Keyword','Brand'], ascending=True)
keyword_min = test_min.groupby(['Keyword'], as_index=False).first()

目前这个列表中大约有 100,000 个单词,我花了一个小时 运行 浏览完那个列表。我很想有一种更快的方法来做这件事。

我认为你这样做可以得到预期的结果:

wordtrends_df = pd.melt(pd.concat((stories_full_recent_df[['Brand', 'Captured_Date', 'Coverage']],
                                   stories_full_recent_df.Keywords.apply(pd.Series)),axis=1),
                        id_vars=['Brand','Captured_Date','Coverage'],value_name='Keyword')\
                  .drop(['variable'],axis=1).dropna(subset=['Keyword'])

下面用一个小例子进行解释。

考虑一个示例数据框:

df = pd.DataFrame({'Brand': ['X', 'Y'],
 'Captured_Date': ['2017-04-01', '2017-04-02'],
 'Coverage': [10, 20],
 'Keywords': [['a', 'b', 'c'], ['c', 'd']]})
#   Brand Captured_Date  Coverage   Keywords
# 0     X    2017-04-01        10  [a, b, c]
# 1     Y    2017-04-02        20     [c, d]

您可以做的第一件事是展开关键字列,以便每个关键字占据自己的列:

a = df.Keywords.apply(pd.Series)
#    0  1    2
# 0  a  b    c
# 1  c  d  NaN

将此与没有关键字列的原始 df 连接起来:

b = pd.concat((df[['Captured_Date','Brand','Coverage']],a),axis=1)
#   Captured_Date Brand  Coverage  0  1    2
# 0    2017-04-01     X        10  a  b    c
# 1    2017-04-02     Y        20  c  d  NaN

合并最后一个结果,为每个关键字创建一行:

c = pd.melt(b,id_vars=['Captured_Date','Brand','Coverage'],value_name='Keyword')
#   Captured_Date Brand  Coverage variable Keyword
# 0    2017-04-01     X        10        0       a
# 1    2017-04-02     Y        20        0       c
# 2    2017-04-01     X        10        1       b
# 3    2017-04-02     Y        20        1       d
# 4    2017-04-01     X        10        2       c
# 5    2017-04-02     Y        20        2     NaN

最后,删除无用的 variable 列并删除缺少 Keyword 的行:

d = c.drop(['variable'],axis=1).dropna(subset=['Keyword'])
#   Captured_Date Brand  Coverage Keyword
# 0    2017-04-01     X        10       a
# 1    2017-04-02     Y        20       c
# 2    2017-04-01     X        10       b
# 3    2017-04-02     Y        20       d
# 4    2017-04-01     X        10       c

现在您可以按关键字和日期进行计数了。