如何在多层 LSTM 之前添加嵌入层?

How to add embedding layer before multilayer LSTM?

我想在故事生成器中实现 Glove 向量作为单词表示。我在输出中使用 2 层 LSTM 和一个完全连接的 softmax 层。

架构如下所示:

Input --> LSTM --> LSTM --> Fully connected --> Output

对于我的输入,模型应该取三个词并根据这三个词输出一个词。每个输入都是一个维度为 25 的向量。在我用于训练的文本中,只有 100 个标签。每个 LSTM 有 512 个隐藏单元。

请看下面我的代码:

# Parameters
learning_rate = 0.001
training_iters = 50000
display_step = 1000
n_input = 3
n_hidden = 512

# tf Graph input
x = tf.placeholder("float", [None, n_input, glove_dim])
y = tf.placeholder("float", [None, vocab_size])

# RNN output node weights and biases
weights = {'out': tf.Variable(tf.random_normal([n_hidden, vocab_size]))}
biases = {'out': tf.Variable(tf.random_normal([vocab_size]))}

def RNN(x, weights, biases):

    # reshape to [1, n_input]
    x = tf.reshape(x, [-1, n_input])

    # Generate a n_input-element sequence of inputs
    x = tf.split(x,n_input,1)


    rnn_cell =rnn.MultiRNNCell([rnn.BasicLSTMCell(n_hidden),rnn.BasicLSTMCell(n_hidden)])

    # generate prediction
    outputs, states = rnn.static_rnn(rnn_cell, x, dtype=tf.float32)

    return tf.matmul(outputs[-1], weights['out']) + biases['out']

pred = RNN(x, weights, biases)

# Loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate).minimize(cost)

# Model evaluation
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.global_variables_initializer()

# Launch the graph
with tf.Session() as session:
    session.run(init)
    step = 0
    offset = random.randint(0,n_input+1)
    end_offset = n_input + 1
    acc_total = 0
    loss_total = 0

    writer.add_graph(session.graph)

    while step < training_iters:
        # Generate a minibatch. Add some randomness on selection process.
        if offset > (len(training_data)-end_offset):
            offset = random.randint(0, n_input+1)

        symbols_in_keys = [ [glove_dictionary[ str(training_data[i])]] for i in range(offset, offset+n_input) ]
        symbols_in_keys = np.reshape(np.array(symbols_in_keys), [-1, n_input, glove_dim])

        symbols_out_onehot = np.zeros([vocab_size], dtype=float)
        symbols_out_onehot[dictionary[str(training_data[offset+n_input])]] = 1.0
        symbols_out_onehot = np.reshape(symbols_out_onehot,[1,-1])

        _, acc, loss, onehot_pred = session.run([optimizer, accuracy, cost, pred], \
                                            feed_dict={x:symbols_in_keys, y: symbols_out_onehot})
        loss_total += loss
        acc_total += acc
        if (step+1) % display_step == 0:
            print("Iter= " + str(step+1) + ", Average Loss= " + \
                  "{:.6f}".format(loss_total/display_step) + ", Average Accuracy= " + \
                  "{:.2f}%".format(100*acc_total/display_step))
            acc_total = 0
            loss_total = 0
            symbols_in = [training_data[i] for i in range(offset, offset + n_input)]
            symbols_out = training_data[offset + n_input]
            symbols_out_pred = reverse_dictionary[int(tf.argmax(onehot_pred, 1).eval())]
            print("%s - [%s] vs [%s]" % (symbols_in,symbols_out,symbols_out_pred))
    step += 1
    offset += (n_input+1)
    print("Optimization Finished!")
    print("Elapsed time: ", elapsed(time.time() - start_time))
    print("Run on command line.")
    print("\ttensorboard --logdir=%s" % (logs_path))
    print("Point your web browser to: http://localhost:6006/")
    while True:
        prompt = "%s words: " % n_input
        sentence = input(prompt)
        sentence = sentence.strip()
        words = sentence.split(' ')
        if len(words) != n_input:
            continue
        try:
            symbols_in_keys = [glove_dictionary[str(words[i])] for i in range(len(words))]
            for i in range(32):
                keys = np.reshape(np.array(symbols_in_keys), [-1, n_input, 1])
                onehot_pred = session.run(pred, feed_dict={x: keys})
                onehot_pred_index = int(tf.argmax(onehot_pred, 1).eval())
                sentence = "%s %s" % (sentence,reverse_dictionary[onehot_pred_index])
                symbols_in_keys = symbols_in_keys[1:]
                symbols_in_keys.append(onehot_pred_index)
            print(sentence)
        except:
            print("Word not in dictionary")

当我 运行 执行此操作时,出现错误:

InvalidArgumentError (see above for traceback): logits and labels must have the same first dimension, got logits shape [160,14313] and labels shape [10]
     [[Node: SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits = SparseSoftmaxCrossEntropyWithLogits[T=DT_FLOAT, Tlabels=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](add, Reshape_1)]]

我可以知道如何确定 logits 形状吗?我可以做些什么来更正我的代码?

我认为问题出在你这样做的时候

# reshape to [1, n_input]
x = tf.reshape(x, [-1, n_input])

# Generate a n_input-element sequence of inputs
x = tf.split(x,n_input,1)

x 首先重塑为 (batch_size * glove_dim, n_input)

然后分割成(batch_size * glove_dim, 1)

因此 rnn.static_rnn1 作为 input_size 并通过乘以 weight 矩阵将其投影到 vocab_size

这导致输出为 (batch_size * glove_dim, vocab_size)

也许你可以尝试添加 x = [tf.reshape(w, [-1, glove_dim]) for w in x]

x = tf.split(x,n_input,1)

之后