如何使用卷积神经网络对 Convert/Transform pandas dataframe 进行分析?

How to Convert/Transform pandas dataframe for analysis using convolutional neural network?

我有时间序列数据帧,我想将其与卷积神经网络结合使用以进行 pattern/anomaly 检测。

只是想知道如何在不丢失基本数据的情况下进行转换?

使用移动 window:

从一个简单的数据帧设法形成一个包含 3D 数组的张量,用于在卷积神经网络中进行分析
def windows(data, size):
    start = 0
    while start < len(data):
        #print(start,start+size)
        yield start, start + size
        print(start, start + size)
        start += 1

def segmentor(data,window_size,num_channels):
    segments=np.empty((0,window_size,num_channels)) #create dimensions for height component
    for (start,end) in windows(data,window_size):
        placeholder=data.iloc[int(start):int(end),:] #slices the dataframe to extract that time window
        #Now need to forgo the leftovers in each dataframe:
        if(len(placeholder)==window_size): #If the length of timewindow == specified time-window size,
            pl_=(np.dstack((placeholder.ix[:,i] for i in placeholder))) #stack the columns (depthwise)
            #print(pl_.shape)
            #pl_=pl_.swapaxes(1,2)
            segments=np.vstack([segments,pl_])
            #print(segments.shape)
    return segments

然后可以将生成的结构传递给通用 CNN。