Pandas Dataframe 多索引按级别和列值排序
Pandas Dataframe Mutli index sorting by level and column value
我有一个 pandas 数据框,如下所示:
value
Id
2014-03-13 1 -3
2 -6
3 -3.2
4 -3.1
5 -5
2014-03-14 1 -3.4
2 -6.2
3 -3.2
4 -3.2
5 -5.9
这基本上是一个具有两级多索引的 groupby 对象。
我想根据 value
列升序排序,但保持 0 级(日期)不变,这样结果应该如下所示:
value
Id
2014-03-13 2 -6
5 -5
3 -3.2
4 -3.1
1 -3
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
这是生成初始数据的代码:
import pandas as pd
dates = [pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-13', format='%Y-%m-%d'),
pd.to_datetime('2014-03-13', format='%Y-%m-%d'),pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d'),
pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d')]
values = [-3,-6,-3.2,-3.1,-5,-3.4,-6.2,-3.2,-3.2,-5.9]
Ids = [1,2,3,4,5,1,2,3,4,5]
df = pd.DataFrame({'Id': pd.Series(Ids, index=dates),
'value': pd.Series(values, index=dates)})
df = df.groupby([df.index,'Id']).sum()
据我所知,不可能同时对索引和列进行排序,但一个简单的解决方法如下:
df = df.reset_index().sort_values(by = ['level_0','values']).set_index(['level_0','Id'])
...如果您需要删除 'level_0' 索引标签:
df.index.names = [None, 'Id']
设置:
import pandas as pd
import io
c = io.StringIO(u'''
Id value
2014-03-13 1 -3
2014-03-13 2 -6
2014-03-13 3 -3.2 2014-03-13 4 -3.1
2014-03-13 5 -5
2014-03-14 1 -3.4
2014-03-14 2 -6.2
2014-03-14 3 -3.2
2014-03-14 4 -3.2
2014-03-14 5 -5.9
''')
df = pd.read_csv(c, delim_whitespace = True)
df = df.groupby([df.index,'Id']).max()
初始df:
value
Id
2014-03-13 1 -3.0
2 -6.0
3 -3.2
4 -3.1
5 -5.0
2014-03-14 1 -3.4
2 -6.2
3 -3.2
4 -3.2
5 -5.9
输出:
value
Id
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
对我来说有效 reset_index
+ sort_values
+ set_index
+ rename_axis
:
df = df.reset_index() \
.sort_values(['level_0','value']) \
.set_index(['level_0','Id']) \
.rename_axis([None, 'Id'])
print (df)
value
Id
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
另一个解决方案sort_values
+ swaplevel
+ sort_index
:
df = df.sort_values('value')
.swaplevel(0,1)
.sort_index(level=1, sort_remaining=False)
.swaplevel(0,1)
print (df)
value
Id
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
交换级别是必要的,因为:
print (df.sort_values('value').sort_index(level=0, sort_remaining=False))
value
Id
2014-03-13 1 -3.0
2 -6.0
3 -3.2
4 -3.1
5 -5.0
2014-03-14 1 -3.4
2 -6.2
3 -3.2
4 -3.2
5 -5.9
对于 pandas 0.23.0
是可能的排序 columns and index levels together:
df.index.names = ['level1','level2']
print (df.sort_values(['level1','value']))
value
level1 level2
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
我有一个 pandas 数据框,如下所示:
value
Id
2014-03-13 1 -3
2 -6
3 -3.2
4 -3.1
5 -5
2014-03-14 1 -3.4
2 -6.2
3 -3.2
4 -3.2
5 -5.9
这基本上是一个具有两级多索引的 groupby 对象。
我想根据 value
列升序排序,但保持 0 级(日期)不变,这样结果应该如下所示:
value
Id
2014-03-13 2 -6
5 -5
3 -3.2
4 -3.1
1 -3
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
这是生成初始数据的代码:
import pandas as pd
dates = [pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-13', format='%Y-%m-%d'), pd.to_datetime('2014-03-13', format='%Y-%m-%d'),
pd.to_datetime('2014-03-13', format='%Y-%m-%d'),pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d'),
pd.to_datetime('2014-03-14', format='%Y-%m-%d'), pd.to_datetime('2014-03-14', format='%Y-%m-%d')]
values = [-3,-6,-3.2,-3.1,-5,-3.4,-6.2,-3.2,-3.2,-5.9]
Ids = [1,2,3,4,5,1,2,3,4,5]
df = pd.DataFrame({'Id': pd.Series(Ids, index=dates),
'value': pd.Series(values, index=dates)})
df = df.groupby([df.index,'Id']).sum()
据我所知,不可能同时对索引和列进行排序,但一个简单的解决方法如下:
df = df.reset_index().sort_values(by = ['level_0','values']).set_index(['level_0','Id'])
...如果您需要删除 'level_0' 索引标签:
df.index.names = [None, 'Id']
设置:
import pandas as pd
import io
c = io.StringIO(u'''
Id value
2014-03-13 1 -3
2014-03-13 2 -6
2014-03-13 3 -3.2 2014-03-13 4 -3.1
2014-03-13 5 -5
2014-03-14 1 -3.4
2014-03-14 2 -6.2
2014-03-14 3 -3.2
2014-03-14 4 -3.2
2014-03-14 5 -5.9
''')
df = pd.read_csv(c, delim_whitespace = True)
df = df.groupby([df.index,'Id']).max()
初始df:
value
Id
2014-03-13 1 -3.0
2 -6.0
3 -3.2
4 -3.1
5 -5.0
2014-03-14 1 -3.4
2 -6.2
3 -3.2
4 -3.2
5 -5.9
输出:
value
Id
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
对我来说有效 reset_index
+ sort_values
+ set_index
+ rename_axis
:
df = df.reset_index() \
.sort_values(['level_0','value']) \
.set_index(['level_0','Id']) \
.rename_axis([None, 'Id'])
print (df)
value
Id
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
另一个解决方案sort_values
+ swaplevel
+ sort_index
:
df = df.sort_values('value')
.swaplevel(0,1)
.sort_index(level=1, sort_remaining=False)
.swaplevel(0,1)
print (df)
value
Id
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2
交换级别是必要的,因为:
print (df.sort_values('value').sort_index(level=0, sort_remaining=False))
value
Id
2014-03-13 1 -3.0
2 -6.0
3 -3.2
4 -3.1
5 -5.0
2014-03-14 1 -3.4
2 -6.2
3 -3.2
4 -3.2
5 -5.9
对于 pandas 0.23.0
是可能的排序 columns and index levels together:
df.index.names = ['level1','level2']
print (df.sort_values(['level1','value']))
value
level1 level2
2014-03-13 2 -6.0
5 -5.0
3 -3.2
4 -3.1
1 -3.0
2014-03-14 2 -6.2
5 -5.9
1 -3.4
3 -3.2
4 -3.2