如何解释火花逻辑回归预测中的概率列?

How to interpret probability column in spark logistic regression prediction?

我正在通过 spark.ml.classification.LogisticRegressionModel.predict 获取预测结果。许多行的 prediction 列为 1.0probability 列为 .04model.getThreshold0.5 所以我假设模型将超过 0.5 概率阈值的所有东西分类为 1.0.

我应该如何解释 1.0 predictionprobability 0.04 的结果?

执行 LogisticRegression 的概率列应包含一个列表,其长度与 class 的数量相同,其中每个索引给出 class 的相应概率。我用两个 class 做了一个小例子来说明:

case class Person(label: Double, age: Double, height: Double, weight: Double)
val df = List(Person(0.0, 15, 175, 67), 
      Person(0.0, 30, 190, 100), 
      Person(1.0, 40, 155, 57), 
      Person(1.0, 50, 160, 56), 
      Person(0.0, 15, 170, 56), 
      Person(1.0, 80, 180, 88)).toDF()

val assembler = new VectorAssembler().setInputCols(Array("age", "height", "weight"))
  .setOutputCol("features")
  .select("label", "features")
val df2 = assembler.transform(df)
df2.show

+-----+------------------+
|label|          features|
+-----+------------------+
|  0.0| [15.0,175.0,67.0]|
|  0.0|[30.0,190.0,100.0]|
|  1.0| [40.0,155.0,57.0]|
|  1.0| [50.0,160.0,56.0]|
|  0.0| [15.0,170.0,56.0]|
|  1.0| [80.0,180.0,88.0]|
+-----+------------------+

val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val Array(testing, training) = df2.randomSplit(Array(0.7, 0.3))

val model = lr.fit(training)
val predictions = model.transform(testing)
predictions.select("probability", "prediction").show(false)


+----------------------------------------+----------+
|probability                             |prediction|
+----------------------------------------+----------+
|[0.7487950501224138,0.2512049498775863] |0.0       |
|[0.6458452667523259,0.35415473324767416]|0.0       |
|[0.3888393314864866,0.6111606685135134] |1.0       |
+----------------------------------------+----------+

这是概率以及算法做出的最终预测。最后概率最大的class就是预测的