如何使用 tf.contrib.opt.ScipyOptimizerInterface 获取损失函数历史记录
How to get loss function history using tf.contrib.opt.ScipyOptimizerInterface
我需要获取随时间变化的损失历史记录以将其绘制成图表。
这是我的代码框架:
optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, method='L-BFGS-B',
options={'maxiter': args.max_iterations, 'disp': print_iterations})
optimizer.minimize(sess, loss_callback=append_loss_history)
用append_loss_history
定义:
def append_loss_history(**kwargs):
global step
if step % 50 == 0:
loss_history.append(loss.eval())
step += 1
当我看到 ScipyOptimizerInterface
的详细输出时,损失实际上随着时间的推移而减少。
但是当我打印 loss_history
时,随着时间的推移损失几乎相同。
参考文档:
"Variables subject to optimization are updated in-place AT THE END OF OPTIMIZATION"
https://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface。这是损失不变的原因吗?
我认为你有问题;直到优化结束(而不是 being fed to session.run calls),变量本身才被修改,并且评估 "back channel" 张量得到未修改的变量。相反,使用 optimizer.minimize
的 fetches
参数来搭载指定提要的 session.run
调用:
import tensorflow as tf
def print_loss(loss_evaled, vector_evaled):
print(loss_evaled, vector_evaled)
vector = tf.Variable([7., 7.], 'vector')
loss = tf.reduce_sum(tf.square(vector))
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss, method='L-BFGS-B',
options={'maxiter': 100})
with tf.Session() as session:
tf.global_variables_initializer().run()
optimizer.minimize(session,
loss_callback=print_loss,
fetches=[loss, vector])
print(vector.eval())
(修改自example in the documentation)。这将打印具有更新值的张量:
98.0 [ 7. 7.]
79.201 [ 6.29289341 6.29289341]
7.14396e-12 [ -1.88996808e-06 -1.88996808e-06]
[ -1.88996808e-06 -1.88996808e-06]
我需要获取随时间变化的损失历史记录以将其绘制成图表。 这是我的代码框架:
optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, method='L-BFGS-B',
options={'maxiter': args.max_iterations, 'disp': print_iterations})
optimizer.minimize(sess, loss_callback=append_loss_history)
用append_loss_history
定义:
def append_loss_history(**kwargs):
global step
if step % 50 == 0:
loss_history.append(loss.eval())
step += 1
当我看到 ScipyOptimizerInterface
的详细输出时,损失实际上随着时间的推移而减少。
但是当我打印 loss_history
时,随着时间的推移损失几乎相同。
参考文档: "Variables subject to optimization are updated in-place AT THE END OF OPTIMIZATION" https://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface。这是损失不变的原因吗?
我认为你有问题;直到优化结束(而不是 being fed to session.run calls),变量本身才被修改,并且评估 "back channel" 张量得到未修改的变量。相反,使用 optimizer.minimize
的 fetches
参数来搭载指定提要的 session.run
调用:
import tensorflow as tf
def print_loss(loss_evaled, vector_evaled):
print(loss_evaled, vector_evaled)
vector = tf.Variable([7., 7.], 'vector')
loss = tf.reduce_sum(tf.square(vector))
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss, method='L-BFGS-B',
options={'maxiter': 100})
with tf.Session() as session:
tf.global_variables_initializer().run()
optimizer.minimize(session,
loss_callback=print_loss,
fetches=[loss, vector])
print(vector.eval())
(修改自example in the documentation)。这将打印具有更新值的张量:
98.0 [ 7. 7.]
79.201 [ 6.29289341 6.29289341]
7.14396e-12 [ -1.88996808e-06 -1.88996808e-06]
[ -1.88996808e-06 -1.88996808e-06]