如何使用 numpy 正确屏蔽 3D 数组

How to Correctly mask 3D Array with numpy

我正在尝试使用 numpy 屏蔽 3D 阵列(RGB 图像)。

但是,我目前的方法是重塑掩码数组(下面的输出)。 我尝试遵循 SciKit-Image 速成课程中描述的方法。 Crash Course

我查看了 Whosebug 并提出了类似的问题,但没有被接受的答案

像这样完成屏蔽的最佳方法是什么?

这是我的尝试:

# create some random numbers to fill array
tmp = np.random.random((10, 10))

# create a 3D array to be masked
a = np.dstack((tmp, tmp, tmp))

# create a boolean mask of zeros
mask = np.zeros_like(a, bool)

# set a few values in the mask to true
mask[1:5,0,0] = 1
mask[1:5,0,1] = 1

# Try to mask the original array
masked_array = a[:,:,:][mask == 1]

# Check that masked array is still 3D for plotting with imshow
print(a.shape)
(10, 10, 3)

print(mask.shape)
(10, 10, 3)

print(masked_array.shape)
(8,)

# plot original array and masked array, for comparison
plt.imshow(a)
plt.imshow(masked_array)

plt.show()

在找到以下 post 关于尺寸损失 之后,我找到了使用 numpy.where 的解决方案:

masked_array = np.where(mask==1, a , 0)

这看起来效果不错。

NumPy 广播允许您使用与图像形状不同的蒙版。例如,

import numpy as np
import matplotlib.pyplot as plt

# Construct a random 50x50 RGB image    
image = np.random.random((50, 50, 3))

# Construct mask according to some condition;
# in this case, select all pixels with a red value > 0.3
mask = image[..., 0] > 0.3

# Set all masked pixels to zero
masked = image.copy()
masked[mask] = 0

# Display original and masked images side-by-side
f, (ax0, ax1) = plt.subplots(1, 2)
ax0.imshow(image)
ax1.imshow(masked)
plt.show()