labelencoder 和 OneHotEncoder 的值错误
Value error with labelencoder and OneHotEncoder
我正在尝试将分类字符串列转换为多个虚拟变量二进制列,但出现值错误。
代码如下:
import sys, os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from dateutil import parser
import math
import traceback
import logging
datasetMod = pd.read_csv('data.csv')
X = datasetMod.iloc[:, 3:6].values
y = datasetMod.iloc[:, 1].values
print(X[:, 0])
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
try:
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
except Exception as e:
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
print(exc_type, fname, exc_tb.tb_lineno)
这是错误:
<class 'ValueError'> multipleLinearRegression.py 23
该列的打印语句的结果是:
['Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Weekend' 'Workday' 'Workday' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend']
字符串本身似乎没有任何问题,中间没有空格,也没有类似数字的符号。所以我不明白为什么我得到一个值类型无法将字符串转换为浮点数错误。
非常感谢任何帮助。
更新
onehotencoder 现在可以正常工作了,但最终结果是对象类型,而它应该是 float64 类型:
labelencoder_X = LabelEncoder()
X[:, 1] = labelencoder_X.fit_transform(X[:, 1])
X[:, 2] = labelencoder_X.fit_transform(X[:, 2])
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
onehotencoder.fit(X[:, 1])
onehotencoder.fit(X[:, 2])
onehotencoder.fit(X[:, 3])
onehotencoder.transform(X[:, 1])
onehotencoder.transform(X[:, 2])
onehotencoder.transform(X[:, 3])
X = onehotencoder.toArray()
更新 2
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 1] = labelencoder_X.fit_transform(X[:, 1])
X[:, 2] = labelencoder_X.fit_transform(X[:, 2])
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
X[:, 1] = onehotencoder.fit_transform(X[:, 1]).toarray()
X[:, 2] = onehotencoder.fit_transform(X[:, 2]).toarray()
X[:, 3] = onehotencoder.fit_transform(X[:, 3]).toarray()
print(X.dtype) #object
最终代码
由于 categorical_features
已经规定了索引,我可以 fit_transform() 对整个矩阵 X
。感谢@mkos 的耐心等待!
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 1] = labelencoder_X.fit_transform(X[:, 1])
X[:, 2] = labelencoder_X.fit_transform(X[:, 2])
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
X = onehotencoder.fit_transform(X)
这应该可以解决问题:
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
X = onehotencoder.fit_transform(X)
您可以使用以下方式打印:
print(X.toArray())
将X
作为稀疏矩阵也不错,因为它可以节省内存。如果你想看到它,那么你将它转换为常规 np.array
和 toArray()
.
我正在尝试将分类字符串列转换为多个虚拟变量二进制列,但出现值错误。
代码如下:
import sys, os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from dateutil import parser
import math
import traceback
import logging
datasetMod = pd.read_csv('data.csv')
X = datasetMod.iloc[:, 3:6].values
y = datasetMod.iloc[:, 1].values
print(X[:, 0])
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
try:
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
except Exception as e:
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
print(exc_type, fname, exc_tb.tb_lineno)
这是错误:
<class 'ValueError'> multipleLinearRegression.py 23
该列的打印语句的结果是:
['Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Weekend' 'Workday' 'Workday' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday' 'Workday'
'Workday' 'Workday' 'Workday' 'Workday' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend' 'Weekend'
'Weekend' 'Weekend' 'Weekend' 'Weekend']
字符串本身似乎没有任何问题,中间没有空格,也没有类似数字的符号。所以我不明白为什么我得到一个值类型无法将字符串转换为浮点数错误。
非常感谢任何帮助。
更新
onehotencoder 现在可以正常工作了,但最终结果是对象类型,而它应该是 float64 类型:
labelencoder_X = LabelEncoder()
X[:, 1] = labelencoder_X.fit_transform(X[:, 1])
X[:, 2] = labelencoder_X.fit_transform(X[:, 2])
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
onehotencoder.fit(X[:, 1])
onehotencoder.fit(X[:, 2])
onehotencoder.fit(X[:, 3])
onehotencoder.transform(X[:, 1])
onehotencoder.transform(X[:, 2])
onehotencoder.transform(X[:, 3])
X = onehotencoder.toArray()
更新 2
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 1] = labelencoder_X.fit_transform(X[:, 1])
X[:, 2] = labelencoder_X.fit_transform(X[:, 2])
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
X[:, 1] = onehotencoder.fit_transform(X[:, 1]).toarray()
X[:, 2] = onehotencoder.fit_transform(X[:, 2]).toarray()
X[:, 3] = onehotencoder.fit_transform(X[:, 3]).toarray()
print(X.dtype) #object
最终代码
由于 categorical_features
已经规定了索引,我可以 fit_transform() 对整个矩阵 X
。感谢@mkos 的耐心等待!
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 1] = labelencoder_X.fit_transform(X[:, 1])
X[:, 2] = labelencoder_X.fit_transform(X[:, 2])
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
X = onehotencoder.fit_transform(X)
这应该可以解决问题:
onehotencoder = OneHotEncoder(categorical_features = [1,2,3])
X = onehotencoder.fit_transform(X)
您可以使用以下方式打印:
print(X.toArray())
将X
作为稀疏矩阵也不错,因为它可以节省内存。如果你想看到它,那么你将它转换为常规 np.array
和 toArray()
.